Distribution feeder microgrid(DFM)built based on existing distributed feeder(DF),is a promising solution for modern microgrid.DFM contains a large number of heterogeneous devices that generate heavy network traffice a...Distribution feeder microgrid(DFM)built based on existing distributed feeder(DF),is a promising solution for modern microgrid.DFM contains a large number of heterogeneous devices that generate heavy network traffice and require a low data delivery latency.The information-centric networking(ICN)paradigm has shown a great potential to address the communication requirements of smart grid.However,the integration of advanced information and communication technologies with DFM make it vulnerable to cyber attacks.Adequate authentication of grid devices is essential for preventing unauthorized accesses to the grid network and defending against cyber attacks.In this paper,we propose a new lightweight anonymous device authentication scheme for DFM supported by named data networking(NDN),a representative implementation of ICN.We perform a security analysis to show that the proposed scheme can provide security features such as mutual authentication,session key agreement,defending against various cyber attacks,anonymity,and resilience against device capture attack.The security of the proposed scheme is also formally verified using the popular AVISPA(Automated Validation of Internet Security Protocols and Applications)tool.The computational and communication costs of the proposed scheme are evaluated.Our results demonstrate that the proposed scheme achieves significantly lower computational,communication and energy costs than other state-of-the-art schemes.展开更多
The 3PAKE(Three-Party Authenticated Key Exchange)protocol is a valuable cryptographic method that offers safe communication and permits two diverse parties to consent to a new safe meeting code using the trusted serve...The 3PAKE(Three-Party Authenticated Key Exchange)protocol is a valuable cryptographic method that offers safe communication and permits two diverse parties to consent to a new safe meeting code using the trusted server.There have been explored numerous 3PAKE protocols earlier to create a protected meeting code between users employing the trusted server.However,existing modified 3PAKE protocols have numerous drawbacks and are incapable to provide desired secrecy against diverse attacks such as manin-the-middle,brute-force attacks,and many others in social networks.In this article,the authors proposed an improved as well as safe 3PAKE protocol based on the hash function and the symmetric encryption for the social networks.The authors utilized a well-acknowledged AVISPA tool to provide security verification of the proposed 3PAKE technique,and findings show that our proposed protocol is safer in opposition to active as well as passive attacks namely the brute-force,man-in-the-middle,parallel attack,and many more.Furthermore,compared to other similar schemes,the proposed protocol is built with a reduced computing cost as our proposed protocol consumes less time in execution and offers high secrecy in the social networks with improved accuracy.As a result,this verified scheme is more efficient as well as feasible for implementation in the social networks in comparison to previous security protocols.Although multifarious authors carried out extensive research on 3PAKE protocols to offer safe communication,still there are vital opportunities to explore and implement novel improved protocols for higher safety in the social networks and mobile commerce environment in the future in opposition to diverse active as well as passive attacks.展开更多
基金This material is based upon work funded by the National Science Foundation EPSCoR Cooperative Agreement OIA-1757207。
文摘Distribution feeder microgrid(DFM)built based on existing distributed feeder(DF),is a promising solution for modern microgrid.DFM contains a large number of heterogeneous devices that generate heavy network traffice and require a low data delivery latency.The information-centric networking(ICN)paradigm has shown a great potential to address the communication requirements of smart grid.However,the integration of advanced information and communication technologies with DFM make it vulnerable to cyber attacks.Adequate authentication of grid devices is essential for preventing unauthorized accesses to the grid network and defending against cyber attacks.In this paper,we propose a new lightweight anonymous device authentication scheme for DFM supported by named data networking(NDN),a representative implementation of ICN.We perform a security analysis to show that the proposed scheme can provide security features such as mutual authentication,session key agreement,defending against various cyber attacks,anonymity,and resilience against device capture attack.The security of the proposed scheme is also formally verified using the popular AVISPA(Automated Validation of Internet Security Protocols and Applications)tool.The computational and communication costs of the proposed scheme are evaluated.Our results demonstrate that the proposed scheme achieves significantly lower computational,communication and energy costs than other state-of-the-art schemes.
基金This project was funded by the Taif University Researchers Supporting Project Number(TURSP-2020/347),Taif Unversity,Taif,Saudi Arabia.
文摘The 3PAKE(Three-Party Authenticated Key Exchange)protocol is a valuable cryptographic method that offers safe communication and permits two diverse parties to consent to a new safe meeting code using the trusted server.There have been explored numerous 3PAKE protocols earlier to create a protected meeting code between users employing the trusted server.However,existing modified 3PAKE protocols have numerous drawbacks and are incapable to provide desired secrecy against diverse attacks such as manin-the-middle,brute-force attacks,and many others in social networks.In this article,the authors proposed an improved as well as safe 3PAKE protocol based on the hash function and the symmetric encryption for the social networks.The authors utilized a well-acknowledged AVISPA tool to provide security verification of the proposed 3PAKE technique,and findings show that our proposed protocol is safer in opposition to active as well as passive attacks namely the brute-force,man-in-the-middle,parallel attack,and many more.Furthermore,compared to other similar schemes,the proposed protocol is built with a reduced computing cost as our proposed protocol consumes less time in execution and offers high secrecy in the social networks with improved accuracy.As a result,this verified scheme is more efficient as well as feasible for implementation in the social networks in comparison to previous security protocols.Although multifarious authors carried out extensive research on 3PAKE protocols to offer safe communication,still there are vital opportunities to explore and implement novel improved protocols for higher safety in the social networks and mobile commerce environment in the future in opposition to diverse active as well as passive attacks.