This study investigates the effect of the deformation mode on the precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy.The alloy samples are compared after the application of 3.5%tension and 3.5%compr...This study investigates the effect of the deformation mode on the precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy.The alloy samples are compared after the application of 3.5%tension and 3.5%compression along the extrusion direction to induce slip-dominant and twinning-dominant deformation modes,respectively.The pre-compressed(PC)sample,which contained numerous{10-12}tension twins,has a reduced grain size and a higher internal strain than the pre-tensioned(PT)sample,which is attributed to the inherent internal strain that occurs during the formation and growth of the twins.As a result,the precipitation behavior of the PC sample is accelerated,leading to its short peak aging time of 32 h,which is lower than those of the PT and as-extruded samples(48 and 100 h,respectively).Furthermore,fine continuous precipitates(CPs)rapidly form within the{10-12}twins,contributing to the enhanced hardness.Discontinuous precipitates(DPs),which have a hardness comparable to the CP-containing twinned regions,in the PC sample experience less coarsening during aging than those in the PT sample due to growth inhibition by the{10-12}twins.Ultimately,the{10-12}twins generated under the twinning-dominant deformation condition lead to enhanced precipitation behaviors,including the preferential formation and refinement of CPs and the suppressed coarsening of DPs.Consequently,pre-deformation that occurs{10-12}twinning exhibits more pronounced effects on precipitation acceleration and microstructural modification than slip-inducing pre-deformation.展开更多
Hot torsion tests for AZ80 magnesium alloy were carried out in the temperature range of 380℃-260℃,with a constant decreasing temperature rate of 10℃/s in order to weaken the basal texture and refine the grains.The ...Hot torsion tests for AZ80 magnesium alloy were carried out in the temperature range of 380℃-260℃,with a constant decreasing temperature rate of 10℃/s in order to weaken the basal texture and refine the grains.The results indicated that the average grain sizes were refined forming gradient structure with increasing specimen radial position from center(12.2-5.4μm),and that the initial basal texture intensity of the extruded magnesium alloy was weakened from 46.2 to 8.3.Furthermore,the extension twins(ETs)could be disintegrated from the twins forming separated twins with smaller sizes.Interestingly,ETs with the same twin variant intersecting with each other could be coalesced forming grains with similar orientation,while ETs with different twin variants were separated by twins boundaries contributing to grain refinement.Moreover,in addition to the conventional continuous dynamic recrystallized(CDRX)grains with 30˚orientation rotated around C-axis of the parent grains,CDRXed grains with 30˚rotation around a-axis and random rotation axis were also discerned.Besides,the CDRX evolution induced twins were also elaborated,exhibiting the complex competition between CDRX and twining.Hot torsion deformation with constant decreasing temperatures rate is an effective way of grain refinement and texture modification.展开更多
The extruded AZ80+0.4%Ce magnesium alloy was twisted in the temperature range of 300-380℃by using a Gleeble 3500 thermal simulation test machine with a torsion unit.The deformed cylindrical specimens were cooled at a...The extruded AZ80+0.4%Ce magnesium alloy was twisted in the temperature range of 300-380℃by using a Gleeble 3500 thermal simulation test machine with a torsion unit.The deformed cylindrical specimens were cooled at a cooling rate of 10℃/s or 0.1℃/s,respectively,and aged at 170℃.The microstructure analysis results showed that the grain size decreased with increasing specimen radial position from center(SRPC),and that the strong initial basal texture of the extruded magnesium alloy was weakened.Both continuous and discontinuous dynamic recrystallization mechanisms were involved in contributing to the grain refinement for all specimens investigated.And a novel extension twinning induced dynamic recrystallization mechanism was proposed for specimen deformed at 300℃.For the specimens deformed at 300℃and 340℃followed by a slow cooling rate(0.1℃/s),precipitates of various shapes(β-Mg_(17)Al_(12)),with the dominant precipitates being on the grains boundaries,appeared on the surface section.For specimen deformed at 380℃,lamellar precipitates(LPS)in the interiors of the grains were predominant.After aging,the LPS still dominated for specimens twisted at 380℃;however,the LPS gradually decreased with decreasing deformation temperatures from 380℃to 300℃.Dynamically precipitatedβ,especially those decorating the grain boundaries,changed the competition pictures for the LPS and precipitates of other shapes after aging.Interestingly,LPS dominated the areas for the center section of the specimens after aging regardless of deformation temperatures.Low temperature deformation with high SRPC followed by rapid cooling rate increased the micro hardness of the alloy after aging due to refined grain,reduced precipitates size,decreased lamellar spacing as well as strain hardening.展开更多
Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore co...Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore content of 0.52%, which was 77% lower than 2.21% of PSMC AZ80 counterpart. The YS, UTS, e<sub>f</sub>, E and strengthening rate of cast AZ80 were determined by mechanical pulling. The engineering stress versus strain bended lines showed that SC AZ80 had a YS of 84.7 MPa, a UTS of 168.2 MPa, 5.1% in e<sub>f</sub>, and 25.1 GPa in modulus. But, the YS, UTS and e<sub>f</sub> of the PSMC AZ80 specimen were only 71.6 MPa, 109.0 MPa, 1.9% and 21.9 GPa. The findings of the mechanical pulling evidently depicted that the YS, UTS, e<sub>f</sub> and E of SC AZ80 were 18%, 54%, 174% and 15% higher than PSMC counterpart. The computed resilience and toughness suggested that the SC AZ80 exhibited greater resistance to tensile loads during elastic deformation and possessed higher capacity to absorb energy during plastic deformation compared to the PSMC AZ80. At the beginning of permanent change, the strengthening rate of SC AZ80 was 10,341 MPa, which was 9% greater than 9489 MPa of PSMC AZ80. The high mechanical characteristics of SC AZ80 should be primarily attributed to its low porosity level. .展开更多
The effects of pre-existing {10–12} extension twins on the precipitation behavior of an extruded AZ80 material during aging and on its mechanical properties after peak aging are investigated. The material containing ...The effects of pre-existing {10–12} extension twins on the precipitation behavior of an extruded AZ80 material during aging and on its mechanical properties after peak aging are investigated. The material containing {10–12} twins-which are formed by compression before aging(twinned material)-has a finer grain size and higher dislocation density than the extruded material. Although the peak hardnesses of the twinned and extruded materials are almost the same, the time to reach the peak hardness is considerably shorter in the former material than in the latter(4 h and 24 h, respectively). In the twinned material, the high dislocation density of the {10–12} twins promotes continuous precipitation, which results in the formation of numerous fine Mg17Al12precipitates within the twins in the early stage of aging.The formation of these continuous precipitates reduces the driving force for discontinuous precipitation, which consequently suppresses the formation and growth of coarse Mg17Al12precipitates at the grain boundaries. Despite its shorter peak-aging time, the 4 h-peak-aged twinned material shows higher tensile strength and elongation than the 24 h-peak-aged extruded material. These higher mechanical properties of the former material are attributed primarily to the presence of more abundant fine continuous precipitates, which are effective in strengthening the material, and less abundant coarse discontinuous precipitates, which can act as crack initiation sites. These results demonstrate that the introduction of {10–12} twins into wrought Mg–Al-based alloys can accelerate the Mg17Al12precipitation kinetics considerably and improve the strength and ductility of the peak-aged alloys simultaneously.展开更多
This study investigates the effect of{10-12}deformation twins on the continuous precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy during aging.The extruded AZ80 alloy is compressed along the transv...This study investigates the effect of{10-12}deformation twins on the continuous precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy during aging.The extruded AZ80 alloy is compressed along the transverse direction to introduce{10-12}twins,followed by an aging treatment at 300℃.The extruded material exhibits a twin-free microstructure with low internal strain energy,whereas the pre-twinned material possesses abundant{10-12}twins and has high internal strain energy.The aging results reveal that the peak-aging time of the pre-twinned material(1 h)is one-eighth of that of the extruded material(8 h).Although Mg_(17)Al_(12)continuous precipitates(CPs)are observed in both the peak-aged materials,these CPs are much smaller and more densely distributed in the pre-twinned material despite the significantly shorter aging time.The CPs size in the peak-aged materials increases in the following order:twinned region in the pre-twinned material(0.47μm)<residual matrix region in the pre-twinned material(1.71μm)<matrix region in the extruded material(2.55μm).Moreover,the CPs number density in the twinned region of the pre-twinned material is approximately 11 times higher than that in the matrix region of the extruded material.The peak-aged pre-twinned material exhibits significantly higher tensile strength and ductility than the peak-aged extruded material.These results demonstrate that the formation of{10-12}twins in the extruded AZ80 alloy substantially accelerates the static precipitation of CPs during aging at 300℃and improves the tensile properties of the peak-aged material.展开更多
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korea government(MSIT)(Nos.RS-2024-00351052 and RS-2024-00450561).
文摘This study investigates the effect of the deformation mode on the precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy.The alloy samples are compared after the application of 3.5%tension and 3.5%compression along the extrusion direction to induce slip-dominant and twinning-dominant deformation modes,respectively.The pre-compressed(PC)sample,which contained numerous{10-12}tension twins,has a reduced grain size and a higher internal strain than the pre-tensioned(PT)sample,which is attributed to the inherent internal strain that occurs during the formation and growth of the twins.As a result,the precipitation behavior of the PC sample is accelerated,leading to its short peak aging time of 32 h,which is lower than those of the PT and as-extruded samples(48 and 100 h,respectively).Furthermore,fine continuous precipitates(CPs)rapidly form within the{10-12}twins,contributing to the enhanced hardness.Discontinuous precipitates(DPs),which have a hardness comparable to the CP-containing twinned regions,in the PC sample experience less coarsening during aging than those in the PT sample due to growth inhibition by the{10-12}twins.Ultimately,the{10-12}twins generated under the twinning-dominant deformation condition lead to enhanced precipitation behaviors,including the preferential formation and refinement of CPs and the suppressed coarsening of DPs.Consequently,pre-deformation that occurs{10-12}twinning exhibits more pronounced effects on precipitation acceleration and microstructural modification than slip-inducing pre-deformation.
基金supported by key technology research and development project of ShanXi province(20201102019)Natural science foundation of Shanxi Province(201901D111167)+2 种基金Shanxi Scholarship Council of China(2020-117)JCKY2018408B003Magnesium alloy high-performance XXX multi-directional extrusion technologyXX supporting scientific research project(xxxx-2019-021).
文摘Hot torsion tests for AZ80 magnesium alloy were carried out in the temperature range of 380℃-260℃,with a constant decreasing temperature rate of 10℃/s in order to weaken the basal texture and refine the grains.The results indicated that the average grain sizes were refined forming gradient structure with increasing specimen radial position from center(12.2-5.4μm),and that the initial basal texture intensity of the extruded magnesium alloy was weakened from 46.2 to 8.3.Furthermore,the extension twins(ETs)could be disintegrated from the twins forming separated twins with smaller sizes.Interestingly,ETs with the same twin variant intersecting with each other could be coalesced forming grains with similar orientation,while ETs with different twin variants were separated by twins boundaries contributing to grain refinement.Moreover,in addition to the conventional continuous dynamic recrystallized(CDRX)grains with 30˚orientation rotated around C-axis of the parent grains,CDRXed grains with 30˚rotation around a-axis and random rotation axis were also discerned.Besides,the CDRX evolution induced twins were also elaborated,exhibiting the complex competition between CDRX and twining.Hot torsion deformation with constant decreasing temperatures rate is an effective way of grain refinement and texture modification.
基金supported by key technology research and development project of Shan Xi province(20201102019)Natural science foundation of Shanxi Province(201901D111167)+1 种基金Shanxi Scholarship Council of China(2020–117)JCKY2018408B003Magnesium alloy high-performance XXX multi-directional extrusion technology and XX supporting scientific research project(xxxx-2019-021)。
文摘The extruded AZ80+0.4%Ce magnesium alloy was twisted in the temperature range of 300-380℃by using a Gleeble 3500 thermal simulation test machine with a torsion unit.The deformed cylindrical specimens were cooled at a cooling rate of 10℃/s or 0.1℃/s,respectively,and aged at 170℃.The microstructure analysis results showed that the grain size decreased with increasing specimen radial position from center(SRPC),and that the strong initial basal texture of the extruded magnesium alloy was weakened.Both continuous and discontinuous dynamic recrystallization mechanisms were involved in contributing to the grain refinement for all specimens investigated.And a novel extension twinning induced dynamic recrystallization mechanism was proposed for specimen deformed at 300℃.For the specimens deformed at 300℃and 340℃followed by a slow cooling rate(0.1℃/s),precipitates of various shapes(β-Mg_(17)Al_(12)),with the dominant precipitates being on the grains boundaries,appeared on the surface section.For specimen deformed at 380℃,lamellar precipitates(LPS)in the interiors of the grains were predominant.After aging,the LPS still dominated for specimens twisted at 380℃;however,the LPS gradually decreased with decreasing deformation temperatures from 380℃to 300℃.Dynamically precipitatedβ,especially those decorating the grain boundaries,changed the competition pictures for the LPS and precipitates of other shapes after aging.Interestingly,LPS dominated the areas for the center section of the specimens after aging regardless of deformation temperatures.Low temperature deformation with high SRPC followed by rapid cooling rate increased the micro hardness of the alloy after aging due to refined grain,reduced precipitates size,decreased lamellar spacing as well as strain hardening.
文摘Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore content of 0.52%, which was 77% lower than 2.21% of PSMC AZ80 counterpart. The YS, UTS, e<sub>f</sub>, E and strengthening rate of cast AZ80 were determined by mechanical pulling. The engineering stress versus strain bended lines showed that SC AZ80 had a YS of 84.7 MPa, a UTS of 168.2 MPa, 5.1% in e<sub>f</sub>, and 25.1 GPa in modulus. But, the YS, UTS and e<sub>f</sub> of the PSMC AZ80 specimen were only 71.6 MPa, 109.0 MPa, 1.9% and 21.9 GPa. The findings of the mechanical pulling evidently depicted that the YS, UTS, e<sub>f</sub> and E of SC AZ80 were 18%, 54%, 174% and 15% higher than PSMC counterpart. The computed resilience and toughness suggested that the SC AZ80 exhibited greater resistance to tensile loads during elastic deformation and possessed higher capacity to absorb energy during plastic deformation compared to the PSMC AZ80. At the beginning of permanent change, the strengthening rate of SC AZ80 was 10,341 MPa, which was 9% greater than 9489 MPa of PSMC AZ80. The high mechanical characteristics of SC AZ80 should be primarily attributed to its low porosity level. .
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science,ICT and Future Planning (MSIP, South Korea)(No.2019R1A2C1085272)。
文摘The effects of pre-existing {10–12} extension twins on the precipitation behavior of an extruded AZ80 material during aging and on its mechanical properties after peak aging are investigated. The material containing {10–12} twins-which are formed by compression before aging(twinned material)-has a finer grain size and higher dislocation density than the extruded material. Although the peak hardnesses of the twinned and extruded materials are almost the same, the time to reach the peak hardness is considerably shorter in the former material than in the latter(4 h and 24 h, respectively). In the twinned material, the high dislocation density of the {10–12} twins promotes continuous precipitation, which results in the formation of numerous fine Mg17Al12precipitates within the twins in the early stage of aging.The formation of these continuous precipitates reduces the driving force for discontinuous precipitation, which consequently suppresses the formation and growth of coarse Mg17Al12precipitates at the grain boundaries. Despite its shorter peak-aging time, the 4 h-peak-aged twinned material shows higher tensile strength and elongation than the 24 h-peak-aged extruded material. These higher mechanical properties of the former material are attributed primarily to the presence of more abundant fine continuous precipitates, which are effective in strengthening the material, and less abundant coarse discontinuous precipitates, which can act as crack initiation sites. These results demonstrate that the introduction of {10–12} twins into wrought Mg–Al-based alloys can accelerate the Mg17Al12precipitation kinetics considerably and improve the strength and ductility of the peak-aged alloys simultaneously.
基金supported by the National Research Foundation of Korea(NRF)(grant no.2019R1A2C1085272)funded by the Ministry of Science,ICTFuture Planning(MSIP,South Korea)。
文摘This study investigates the effect of{10-12}deformation twins on the continuous precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy during aging.The extruded AZ80 alloy is compressed along the transverse direction to introduce{10-12}twins,followed by an aging treatment at 300℃.The extruded material exhibits a twin-free microstructure with low internal strain energy,whereas the pre-twinned material possesses abundant{10-12}twins and has high internal strain energy.The aging results reveal that the peak-aging time of the pre-twinned material(1 h)is one-eighth of that of the extruded material(8 h).Although Mg_(17)Al_(12)continuous precipitates(CPs)are observed in both the peak-aged materials,these CPs are much smaller and more densely distributed in the pre-twinned material despite the significantly shorter aging time.The CPs size in the peak-aged materials increases in the following order:twinned region in the pre-twinned material(0.47μm)<residual matrix region in the pre-twinned material(1.71μm)<matrix region in the extruded material(2.55μm).Moreover,the CPs number density in the twinned region of the pre-twinned material is approximately 11 times higher than that in the matrix region of the extruded material.The peak-aged pre-twinned material exhibits significantly higher tensile strength and ductility than the peak-aged extruded material.These results demonstrate that the formation of{10-12}twins in the extruded AZ80 alloy substantially accelerates the static precipitation of CPs during aging at 300℃and improves the tensile properties of the peak-aged material.