Suppose that G is a finite p-group.If all subgroups of index p^(t)of G are abelian and at least one subgroup of index p^(t−1)of G is not abelian,then G is called an A_(t)-group.We useA0-group to denote an abelian grou...Suppose that G is a finite p-group.If all subgroups of index p^(t)of G are abelian and at least one subgroup of index p^(t−1)of G is not abelian,then G is called an A_(t)-group.We useA0-group to denote an abelian group.From the definition,we know every finite non-abelian p-group can be regarded as an A_(t)-group for some positive integer t.A_(1)-groups and A_(2)-groups have been classified.Classifying A_(3)-groups is an old problem.In this paper,some general properties about A_(t)-groups are given.A_(3)-groups are completely classified up to isomorphism.Moreover,we determine the Frattini subgroup,the derived subgroup and the center of every A_(3)-group,and give the number of A_(1)-subgroups and the triple(μ_(0),μ_(1),μ_(2))of every A_(3)-group,whereμi denotes the number of A_(i)-subgroups of index p of A_(3)-groups.展开更多
A finite non-abelian group G is called metahamiltonian if every subgroup of G is either abelian or normal in G.If G is non-nilpotent,then the structure of G has been determined.If G is nilpotent,then the structure of ...A finite non-abelian group G is called metahamiltonian if every subgroup of G is either abelian or normal in G.If G is non-nilpotent,then the structure of G has been determined.If G is nilpotent,then the structure of G is determined by the structure of its Sylow subgroups.However,the classification of finite metahamiltonian p-groups is an unsolved problem.In this paper,finite metahamiltonian p-groups are completely classified up to isomorphism.展开更多
The explicit expression for the generalized inverse AT,S2 in [6]is utilized in presenting the minors of the generalized inverse AT,S2. Thus, without calculating M-P inverse, weighted M-P inverse, group inverse and Dra...The explicit expression for the generalized inverse AT,S2 in [6]is utilized in presenting the minors of the generalized inverse AT,S2. Thus, without calculating M-P inverse, weighted M-P inverse, group inverse and Drazin inverse, we are able to find the minors of them. The main results are also the generalization of the results proposed by [5] and [8].展开更多
This paper presents the matrix representation for extension of inverse of restriction of a linear operator to a subspace, on the basis of which we establish useful representations in operator and matrix form for the g...This paper presents the matrix representation for extension of inverse of restriction of a linear operator to a subspace, on the basis of which we establish useful representations in operator and matrix form for the generalized inverse A(T,S)^(2) and give some of their applications.展开更多
基金This work was supported by NSFC(Nos.11371232,11471198)by NSF of Shanxi Province(No.2013011001).
文摘Suppose that G is a finite p-group.If all subgroups of index p^(t)of G are abelian and at least one subgroup of index p^(t−1)of G is not abelian,then G is called an A_(t)-group.We useA0-group to denote an abelian group.From the definition,we know every finite non-abelian p-group can be regarded as an A_(t)-group for some positive integer t.A_(1)-groups and A_(2)-groups have been classified.Classifying A_(3)-groups is an old problem.In this paper,some general properties about A_(t)-groups are given.A_(3)-groups are completely classified up to isomorphism.Moreover,we determine the Frattini subgroup,the derived subgroup and the center of every A_(3)-group,and give the number of A_(1)-subgroups and the triple(μ_(0),μ_(1),μ_(2))of every A_(3)-group,whereμi denotes the number of A_(i)-subgroups of index p of A_(3)-groups.
基金This work was supported by NSFC(Nos.11971280,11771258).
文摘A finite non-abelian group G is called metahamiltonian if every subgroup of G is either abelian or normal in G.If G is non-nilpotent,then the structure of G has been determined.If G is nilpotent,then the structure of G is determined by the structure of its Sylow subgroups.However,the classification of finite metahamiltonian p-groups is an unsolved problem.In this paper,finite metahamiltonian p-groups are completely classified up to isomorphism.
文摘The explicit expression for the generalized inverse AT,S2 in [6]is utilized in presenting the minors of the generalized inverse AT,S2. Thus, without calculating M-P inverse, weighted M-P inverse, group inverse and Drazin inverse, we are able to find the minors of them. The main results are also the generalization of the results proposed by [5] and [8].
基金This research is supported by the Natural Science Foundation of the Educational Committee of Jiang Su Province.
文摘This paper presents the matrix representation for extension of inverse of restriction of a linear operator to a subspace, on the basis of which we establish useful representations in operator and matrix form for the generalized inverse A(T,S)^(2) and give some of their applications.