期刊文献+
共找到264,368篇文章
< 1 2 250 >
每页显示 20 50 100
Abiotic stress treatment reveals expansin like A gene OfEXLA1 improving salt and drought tolerance of Osmanthus fragrans by responding to abscisic acid
1
作者 Bin Dong Qianqian Wang +7 位作者 Dan Zhou Yiguang Wang Yunfeng Miao Shiwei Zhong Qiu Fang Liyuan Yang Zhen Xiao Hongbo Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期573-585,共13页
Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental st... Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental stresses. Currently, limited information is available regarding the genetic analysis and functional identification of expansin genes in response to abiotic stress in sweet osmanthus. In this study, a total of 29 expansin genes were identified and divided into four groups by genome-wide analysis from the sweet osmanthus genome. Transcriptome and quantitative Real-time PCR analysis showed that the cell wall-localized protein expansin-like A(OfEXLA1) gene was significantly induced by salt and drought treatment. Histochemical GUS staining of transgenic Arabidopsis lines in which GUS activity was driven with the OfEXLA1 promoter, GUS activity was significantly induced by salt, drought, and exogenous abscisic acid(ABA). In yeast, we found OfEXLA1overexpression significantly improved the population of cells compared with wild-type strains after NaCl and polyethylene glycol(PEG)treatment. Additionally, OfEXLA1 overexpression not only promoted plant growth, but also improved the salt and drought tolerance in Arabidopsis. To gain insight into the role of ABA signaling in the regulation of OfEXLA1 improving abiotic tolerance in sweet osmanthus, four differentially expressed ABA Insensitive 5(ABI5)-like genes(OfABL4, OfABL5, OfABL7, and OfABL8) were identified from transcriptome, and dualluciferase(dual-LUC) and yeast one hybrid(Y1H) assay showed that OfABL4 and OfABL5 might bind to OfEXLA1 promoter to accumulate the OfEXLA1 expression by responding to ABA signaling to improve abiotic tolerance in sweet osmanthus. These results provide the information for understanding the molecular functions of expansin-like A gene and molecular breeding of sweet osmanthus in future. 展开更多
关键词 Osmanthus fragrans Abiotic tolerance EXPANSIN abscisic acid
下载PDF
Effects of Abscisic Acid on Cold Resistance in Digitaria sanguinalis(L.)Scop.
2
作者 Rongbo ZHOU Yihong HU +3 位作者 Li ZHOU Jie PENG Fan XIE Chenzhong JIN 《Agricultural Biotechnology》 2024年第1期15-16,19,共3页
[Objectives]This study was conducted to detect the protective effect of abscisic acid on chilling injury of Digitaria sanguinalis(L.)Scop,and whether this effect is related to antioxidant enzymes and osmotic adjustmen... [Objectives]This study was conducted to detect the protective effect of abscisic acid on chilling injury of Digitaria sanguinalis(L.)Scop,and whether this effect is related to antioxidant enzymes and osmotic adjustment.[Methods]D.sanguinalis plants were sprayed with abscisic acid solution,and exposed to cold stress at 15℃for 3 d after one day and then at 5℃for 25 to 30 d in a growth chamber.The changes of plant osmotic potential under this treatment were detected.[Results]Under low temperature stress,the osmotic potential of plants in the abscisic acid treatment and the control increased,but the osmotic potential level of the abscisic acid treatment plants was lower.The SOD activity of plants in the ABA treatment and the control decreased under low temperature stress.Under low temperature stress,the activity of catalase and peroxidase in ABA-treated plants was higher than that in control plants.[Conclusions]This study provides a theoretical basis for the impact of abscisic acid on the physiological response of D.sanguinalis to cold injury. 展开更多
关键词 Digitaria sanguinalis abscisic acid CAT POD ROS SOD
下载PDF
NaCl Facilitates Cell Wall Phosphorus Reutilization in Abscisic Acid Dependent Manner in Phosphorus Deficient Rice Root
3
作者 YANG Xiaozheng LIU Yusong +4 位作者 HUANG Jing TAO Ye WANG Yifeng SHEN Renfang ZHU Xiaofang 《Rice science》 SCIE CSCD 2023年第2期138-147,共10页
Phosphorus(P) starvation in rice facilitates the reutilization of root cell wall P by enhancing the pectin content. NaCl modulates pectin content, however, it is still unknown whether NaCl is also involved in the proc... Phosphorus(P) starvation in rice facilitates the reutilization of root cell wall P by enhancing the pectin content. NaCl modulates pectin content, however, it is still unknown whether NaCl is also involved in the process of pectin regulated cell wall P remobilization in rice under P starved conditions. In this study, we found that 10 mmol/L NaCl increased the shoot and root biomasses under P deficiency to a remarkable extent, in company with the elevated shoot and root soluble P contents in rice. Further analysis indicated that exogenous NaCl enhanced the root cell wall P mobilization by increasing the pectin methylesterase activity and uronic acid content in pectin suggesting the involvement of NaCl in the process of cell wall P reutilization in P starved rice roots. Additionally, exogenous NaCl up-regulated the expression of P transporter OsPT6, which was induced by P deficiency, suggesting that NaCl also facilitated the P translocation prominently from root to shoot in P starved rice. Moreover, exogenous abscisic acid(ABA) can reverse the NaCl-mediated mitigation under P deficiency, indicating the involvement of ABA in the NaCl regulated root cell wall P reutilization. Taken together, our results demonstrated that NaCl can activate the reutilization of root cell wall P in P starved rice, which is dependent on the ABA accumulation pathway. 展开更多
关键词 abscisic acid cell wall NACL phosphorus transporter phosphorus deficiency REMOBILIZATION
下载PDF
Fiber-specific increase of carotenoid content promotes cotton fiber elongation by increasing abscisic acid and ethylene biosynthesis
4
作者 Jianyan Zeng Dan Yao +17 位作者 Ming Luo Lingli Ding Yi Wang Xingying Yan Shu’e Ye Chuannan Wang Yiping Wu Jingyi Zhang Yaohua Li Lingfang Ran Yonglu Dai Yang Chen Fanlong Wang Hanyan Lai Nian Liu Nianjuan Fang Yan Pei Yuehua Xiao 《The Crop Journal》 SCIE CSCD 2023年第3期774-784,共11页
Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate lig... Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate light harvesting,and scavenge reactive oxygen species.Although carotenoids accumulate predominantly in rapidly elongating cotton fibers,their roles in cotton fiber development remain poorly understood.In this study,a fiber-specific promoter proSCFP was applied to drive the expression of GhOR1Del,a positive regulator of carotenoid accumulation,to upregulate the carotenoid level in cotton fiber in planta.Fiber length,strength,and fineness were increased in proSCFP:GhOR1Del transgenic cotton and abscisic acid(ABA)and ethylene contents were increased in elongating fibers.The ABA downstream regulator GhbZIP27a stimulated the expression of the ethylene synthase gene GhACO3 by binding to its promoter,suggesting that ABA promoted fiber elongation by increasing ethylene production.These findings suggest the involvement of carotenoids and ABA signaling in promoting cotton fiber elongation and provide a strategy for improving cotton fiber quality. 展开更多
关键词 abscisic acid CAROTENOID Cotton fiber elongation ETHYLENE ORANGE gene
下载PDF
Identification and Expression Analysis of Abscisic Acid Signal Transduction Genes in Hemp Seeds
5
作者 Cong Hou Kang Ning +5 位作者 Xiuye Wei Yufei Cheng Huatao Yu Haibin Yu Xia Liu Linlin Dong 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第7期2087-2103,共17页
Abscisic acid(ABA)is involved in regulating diverse biological processes,but its signal transduction genes and roles in hemp seed germination are not well known.Here,the ABA signaling pathway members,PYL,PP2C and SnRK... Abscisic acid(ABA)is involved in regulating diverse biological processes,but its signal transduction genes and roles in hemp seed germination are not well known.Here,the ABA signaling pathway members,PYL,PP2C and SnRK2 gene families,were identified from the hemp reference genome,including 7 CsPYL(pyrab-actin resistance1-like,ABA receptor),8 CsPP2CA(group A protein phosphatase 2c),and 7 CsSnRK2(sucrose nonfermenting1-related protein kinase 2).The content of ABA in hemp seeds in germination stage is lower than that in non-germination stage.Exogenous ABA(1 or 10μM)treatment had a significant regulatory effect on the selected PYL,PP2C,SnRK2 gene families.CsAHG3 and CsHAI1 were most significantly affected by exogenous ABA treatment.Yeast two-hybrid experiments were performed to reveal that CsPYL5,CsSnRK2.2,and CsSnRK2.3 could interact with CsPP2CA7 and demonstrate that this interaction was ABA-independent.Our results indicated that CsPYL5,CsSnRK2.2,CsSnRK2.3 and CsPP2CA7 might involve in the ABA signaling transduction pathway of hemp seeds during the hemp seed germination stages.This study suggested that novel genetic views can be brought into investigation of ABA signaling pathway in hemp seeds and lay the foundation for further exploration of the mechanism of hemp seed germination. 展开更多
关键词 Hemp seeds abscisic acid seed germination PYL-PP2C-SnRK2 gene expression
下载PDF
Isolation and Crystal Structure of 1',4'-Trans-diol of Abscisic Acid
6
作者 WANG Tian-Shan ZHOU Jin-Yan TAN Hong 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2006年第9期1085-1089,共5页
1’,4’-Trans-diol of abscisic acid was isolated from botrytis cinerea as a colorless crystal. The molecular and crystal structures have been determined by X-ray diffraction analysis. It crystallizes in orthorhombic s... 1’,4’-Trans-diol of abscisic acid was isolated from botrytis cinerea as a colorless crystal. The molecular and crystal structures have been determined by X-ray diffraction analysis. It crystallizes in orthorhombic system, space group P212121 with a = 6.724(3), b = 17.559(6), c = 12.265(2) , α = β = γ = 90o, V = 1448.1(8) 3, Z = 4, Dx = 1.222 g/cm3, F(000) = 576 and μ(MoKa) = 0.087 mm-1. The final R = 0.0628 and wR = 0.1604 for 2501 independent reflections with Rint = 0.0160 and 1679 observed reflections with I >2σ(I). There are three intermolecular hydrogen bonds in a unit cell. 展开更多
关键词 botrytis cinerea abscisic acid 1’ 4’-trans-diol of abscisic acid X-ray diffraction analysis
下载PDF
A novel impedance immunosensor based on O-phenylenediamine modified gold electrode to analyze abscisic acid 被引量:7
7
作者 Li, Qian Wang, Ruo Zhong +2 位作者 Huang, Zhi Gang Li, He Song Xiao, Lang Tao 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第4期472-475,共4页
An impedance immunosensor based on O-phenylenediamine modified gold electrode for the determination of phytohormone abscisic acid(ABA) was proposed.The operating pH,absorption time,absorption temperature and concentra... An impedance immunosensor based on O-phenylenediamine modified gold electrode for the determination of phytohormone abscisic acid(ABA) was proposed.The operating pH,absorption time,absorption temperature and concentration of anti-ABA antibody were investigated to optimize the analytical performance.The calibration curve for the determination of ABA was obtained from this impedance immunosensor under optimal conditions.The results showed that the detection limit at about 1 ng/mL in the range of 10-5000 ng... 展开更多
关键词 O-PHENYLENEDIAMINE abscisic acid IMMUNOSENSOR
下载PDF
Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat 被引量:5
8
作者 Xiao Wang Qing Li +5 位作者 Jingjing Xie Mei Huang Jian Cai Qin Zhou Tingbo Dai Dong Jiang 《The Crop Journal》 SCIE CSCD 2021年第1期120-132,共13页
Drought stress is a limiting factor for wheat production and food security.Drought priming has been shown to increase drought tolerance in wheat.However,the underlying mechanisms are unknown.In the present study,the g... Drought stress is a limiting factor for wheat production and food security.Drought priming has been shown to increase drought tolerance in wheat.However,the underlying mechanisms are unknown.In the present study,the genes encoding the biosynthesis and metabolism of abscisic acid(ABA)and jasmonic acid(JA),as well as genes involved in the ABA and JA signaling pathways were up-regulated by drought priming.Endogenous concentrations of JA and ABA increased following drought priming.The interplay between JA and ABA in plant responses to drought priming was further investigated using inhibitors of ABA and JA biosynthesis.Application of fluridone(FLU)or nordihydroguaiaretic acid(NDGA)to primed plants resulted in lower chlorophyll-fluorescence parameters and activities of superoxide dismutase and glutathione reductase,and higher cell membrane damage,compared to primed plants(PD)under drought stress.NDGA+ABA,but not FLU+JA,restored priming-induced tolerance,as indicated by a finding of no significant difference from PD under drought stress.Under drought priming,NDGA induced the suppression of ABA accumulation,while FLU did not affect JA accumulation.These results were consistent with the expression of genes involved in the biosynthesis of ABA and JA.They suggest that ABA and JA are required for priming-induced drought tolerance in wheat,with JA acting upstream of ABA. 展开更多
关键词 WHEAT Drought priming abscisic acid Jasmonic acid Antioxidant activity
下载PDF
RNAi-mediated suppression of the abscisic acid catabolism gene Os ABA8ox1 increases abscisic acid content and tolerance to saline–alkaline stress in rice(Oryza sativa L.) 被引量:5
9
作者 Xiaolong Liu Xianzhi Xie +6 位作者 Chongke Zheng Lixing Wei Xiaowei Li Yangyang Jin Guohui Zhang Chang-Jie Jiang Zhengwei Liang 《The Crop Journal》 SCIE CSCD 2022年第2期354-367,共14页
Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation o... Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation of endogenous abscisic acid(ABA) levels by RNAi-mediated suppression of Os ABA8 ox1(Os ABA8 ox1-kd), a key ABA catabolic gene, significantly increased tolerance to SA stress in rice plants. We produced Os ABA8 ox1-kd lines in two different japonica cultivars, Dongdao 4 and Nipponbare. Compared with nontransgenic control plants(WT), the Os ABA8 ox1-kd seedlings accumulated 25.9%–55.7% higher levels of endogenous ABA and exhibited reduced plasmalemma injury, ROS accumulation and Na;/K;ratio, and higher survival rates, under hydroponic alkaline conditions simulated by 10, 15, and 20 mmol L-1 of Na;CO;. In pot trials using SA field soils of different alkali levels(p H 7.59, 8.86, and 9.29), Os ABA8 ox1–kd plants showed markedly higher seedling survival rates and more vigorous plant growth, resulting in significantly higher yield components including panicle number(85.7%–128.6%), spikelets per panicle(36.9%–61.9%), branches(153.9%–236.7%), 1000–kernel weight(20.0%–28.6%), and percentage of filled spikelets(96.6%–1340.8%) at harvest time. Under severe SA soil conditions(p H = 9.29, EC = 834.4 μS cm-1),Os ABA8 ox1-kd lines showed an 194.5%–1090.8% increase in grain yield per plant relative to WT plants.These results suggest that suppression of Os ABA8 ox1 to increase endogenous ABA levels provides a new molecular approach for improving rice yield in SA paddies. 展开更多
关键词 Rice(Oryza sativa L.) Saline–alkaline stress abscisic acid(ABA) OsABA8ox1-kd Endogenous ABA levels
下载PDF
OsbZIP72 Is Involved in Transcriptional Gene-Regulation Pathway of Abscisic Acid Signal Transduction by Activating Rice High-Affinity Potassium Transporter OsHKT1;1 被引量:2
10
作者 WANG Baoxiang LIU Yan +13 位作者 WANG Yifeng LI Jingfang SUN Zhiguang CHI Ming XING Yungao XU Bo YANG Bo LI Jian LIU Jinbo CHEN Tingmu FANG Zhaowei LU Baiguan XU Dayong Babatunde Kazeem BELLO 《Rice science》 SCIE CSCD 2021年第3期257-267,共11页
We created CRISPR-Cas9 knock-out and overexpressing OsbZIP72 transgenic rice plants to gain a better understanding of the role and molecular mechanism of OsbZIP72 gene in stress tolerance,which has remained largely el... We created CRISPR-Cas9 knock-out and overexpressing OsbZIP72 transgenic rice plants to gain a better understanding of the role and molecular mechanism of OsbZIP72 gene in stress tolerance,which has remained largely elusive.OsbZIP72 was expressed and integrated into rice transgenic plant genomes,and the OsbZIP72 transcript in overexpression lines was elicited by salinity,abscisic acid(ABA)and drought stresses.OsbZIP72 overexpressing plants showed higher tolerance to drought and salinity stresses,while knock-out transgenic lines showed higher sensitivity to these stresses.The differentially expressed genes(DEGs)from RNA-sequencing data encompassed several abiotic stress genes,and the functional classification of these DEGs demonstrated the robust transcriptome diversity in OsbZIP72.Yeast one-hybrid,along with luciferase assay,indicated that OsbZIP72 acted as a transcriptional initiator.Remarkably,electrophoresis mobility assay revealed that OsbZIP72 bound directly to the ABAresponsive element in the OsHKT1;1 promoter region and activated its transcription.Overall,our findings revealed that OsbZIP72 can act as a transcriptional modulator with the ability to induce the expression of OsHKT1;1 in response to environmental stress through an ABA-dependent regulatory pathway,indicating that OsbZIP72 can play a crucial role in the ABA-mediated salt and drought tolerance pathway in rice. 展开更多
关键词 abscisic acid basic leucine zipper drought stress high-affinity potassium transporter RICE salinity stress transgenic plant
下载PDF
Effects of Abscisic Acid Treatment on Berry Coloration and Expression of Flavonoid Biosynthesis Genes in Grape 被引量:6
11
作者 Ayako Katayama-Ikegami Tomoaki Sakamoto +2 位作者 Kana Shibuya Takane Katayama Mei Gao-Takai 《American Journal of Plant Sciences》 2016年第9期1325-1336,共12页
In order to enhance berry coloration of bright-red grape cultivars, the effects of abscisic acid (ABA) treatment on the quantity and composition of anthocyanins as well as the expression of genes related to flavonoid ... In order to enhance berry coloration of bright-red grape cultivars, the effects of abscisic acid (ABA) treatment on the quantity and composition of anthocyanins as well as the expression of genes related to flavonoid biosynthesis in the berry were examined. Exogenous ABA treatment increased anthocyanin content, especially petunidin- and malvidin-type anthocyanins. Quantitative real-time PCR analysis revealed that ABA treatment around véraison resulted in the upregulation of genes encoding enzymes responsible for both general flavonoid and anthocyanin biosynthesis. On the other hand, the gene expressions of enzymes involved in proanthocyanidin synthesis were drastically decreased at véraison and remained extremely low even with ABA treatment. Thus, increases in the total amount and composition ratios of petunidin- and malvidin-type anthocyanins were mainly caused by ABA-induced upregulation of uridine diphosphate glucose flavonoid glucosyl transferase, glutathione S-transferase 4, O-methyl transferase and flavonoid 3’, 5’ hydroxylase expression, resulting in the deep coloration of berry of skin. 展开更多
关键词 abscisic acid (ABA) ANTHOCYANIN Biosynthetic Enzyme Gene Expression Transcription Factor
下载PDF
OsbZIP09,a Unique OsbZIP Transcription Factor of Rice,Promotes Rather Than Suppresses Seed Germination by Attenuating Abscisic Acid Pathway 被引量:1
12
作者 Wang Chuxin Zhu Chengchao +7 位作者 Zhou Yu Xiong Min Wang Jindong Bai Huang Lu Chenya Zhang Changquan Liu Qiaoquan Li Qianfeng 《Rice science》 SCIE CSCD 2021年第4期358-367,I0021-I0023,共13页
We successfully identified a novel and unique OsbZIP transcription factor,OsbZIP09,whose mutants exhibited longer seeds and less severe pre-harvest sprouting than the wild type,but shared similar germination rate as t... We successfully identified a novel and unique OsbZIP transcription factor,OsbZIP09,whose mutants exhibited longer seeds and less severe pre-harvest sprouting than the wild type,but shared similar germination rate as the wild type under normal germination conditions.The expression of OsbZIP09 was induced by abscisic acid(ABA)and declined as the germination process.As a nucleus-localized transcription factor,the conserved binding motif of OsbZIP09 was identified via DNA affinity purification sequencing technique.Further evidences indicated that OsbZIP09 directly enhanced the expression of ABA catabolism gene ABA8ox1,thus reducing ABA accumulation.In addition,OsbZIP09 also directly bound to the promoter of LEA3 gene to inhibit its expression,thus further alleviating the suppressive effect of ABA on seed germination.These results demonstrated that OsbZIP09 likely functions as a brake of the ABA pathway to attenuate the inhibitory effect of ABA on rice seed germination via dual strategies. 展开更多
关键词 OsbZIP09 pre-harvest sprouting abscisic acid seed germination ABA8ox1 gene LEA3 gene RICE transcription factor
下载PDF
Phenotype and mechanism analysis of plant dwarfing in pear regulated by abscisic acid 被引量:1
13
作者 LIU Jian-long ZHANG Chen-xiao +6 位作者 LI Tong-tong LIANG Cheng-lin YANG Ying-jie LI Ding-Li CUI Zhen-hua WANG Ran SONG Jian-kun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第5期1346-1356,共11页
Close planting of dwarf varieties is currently the main cultivation direction for pear trees,and the screening of excellent dwarf varieties is an important goal for breeders.In this study,the dwarfing pear variety‘6... Close planting of dwarf varieties is currently the main cultivation direction for pear trees,and the screening of excellent dwarf varieties is an important goal for breeders.In this study,the dwarfing pear variety‘601D’and its vigorous mutant‘601T’were used to show their biological characteristics and further explore the dwarfing mechanism in‘601D’.The biological characteristics showed that‘601D’had a shorter internode length,a shorter and more compact tree body,thicker and broader leaves,lower stomata density,larger stomata size(dimension),and higher photosynthetic capacity.The biological characteristics of‘601T’showed notable contrasts.The results of endogenous hormone tests indicated that the contents of abscisic acid(ABA),ABA-glucosyl ester,and GA_(4) were higher in‘601D’,but the trans-zeatin content was lower.By transcriptomic analysis,significant differences were found in the biosynthetic and metabolic pathways of ABA.Related transcription factors such as bHLH,WRKY,and homeobox also participated in the regulation of plant dwarfing.We therefore examined three hormones with obvious differences with‘601T’,and found that only ABA could induce‘601T’to return to a dwarfing plant phenotype.Therefore,we conclude that the dwarfing of‘601D’is caused by an excessive accumulation of ABA.This study provides a new theoretical basis for breeding dwarf varieties. 展开更多
关键词 DWARF PEAR PHENOTYPE abscisic acid transcriptomic analysis
下载PDF
The heading-date gene Ghd7 inhibits seed germination by modulating the balance between abscisic acid and gibberellins 被引量:1
14
作者 Yong Hu Song Song +2 位作者 Xiaoyu Weng Aiqing You Yongzhong Xing 《The Crop Journal》 SCIE CSCD 2021年第2期297-304,共8页
Seed dormancy of cultivated rice was largely weakened during the progress of domestication.Correct timing and uniformity of seed germination are important for rapid seedling establishment and highyield production.In t... Seed dormancy of cultivated rice was largely weakened during the progress of domestication.Correct timing and uniformity of seed germination are important for rapid seedling establishment and highyield production.In the present study,we found that the heading-date gene Ghd7 acted as a negative regulator of germination.A mutant of ghd7 showed low sensitivity to exogenous ABA treatment during seed germination.Further investigation revealed reduced accumulation of ABA in mature ghd7 seeds as a consequence of dampened expression of OsNCED genes.Moreover,elevated GA_(3) level was detected in seeds of ghd7 mutant during imbibition course,which was attributed to the induction of genes responsible for the synthesis pathways of bioactive GAs.Thus,Ghd7 inhibits seed germination by increasing the ABA/GA_(3) ratio.Besides revealing pleiotropic effects of Ghd7,our results indicate its role in linking seed germination to growth-phase transition in rice,which would enrich the theoretical basis for future breeding practices. 展开更多
关键词 Ghd7 Seed germination abscisic acid GIBBERELLINS ABA/GA_(3)ratio
下载PDF
Functional polymorphism among members of abscisic acid receptor family (ZmPYL) in maize
15
作者 LU Feng-zhong YU Hao-qiang +3 位作者 LI Si LI Wan-chen ZHANG Zhi-yong FU Feng-ling 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第9期2165-2176,共12页
Pyrabactin resistance 1-like proteins (PYLs) are direct receptors of abscisic acid (ABA). For the redundant and polymorphic functions, some members of the PYL family interact with components of other signaling pathway... Pyrabactin resistance 1-like proteins (PYLs) are direct receptors of abscisic acid (ABA). For the redundant and polymorphic functions, some members of the PYL family interact with components of other signaling pathways. Here, 253 positive colonies from a maize cDNA library were screened as interacting proteins with the members of ZmPYL family. After sequencing and function annotation, 17 of 28 interaction combinations were verified by yeast two-hybrid (Y2H). The germination potential, taproot length and proline content of a quartet mutant of Arabidopsis PYL genes were significantly deceased comparing to the wild type (WT) under alkaline stress (pH 8.5) and 100 μmol L–1 methyl jasmonate (MeJA) induction. The malondialdehyde (MDA) content was significantly increased. After germinating in darkness, the characteristics of dark morphogenesis of the quartet mutant seedlings were more obvious than those of the WT. The differential expression of the related genes of photomorphogenesis in the mutant was much more than that in the WT. Three light and two JA responsive cis-affecting elements were identified during the promoter sequences of the AtPYL1 and AtPYL2 genes. These results suggested that functional polymorphism has evolved among the members of ZmPYL family. In response to developmental and environmental stimuli, they not only function as direct ABA receptors but also interact with components of other signaling pathways mediated JA, brassinosteroid (BR), auxin, etc., and even directly regulate downstream stress-related proteins. These signaling pathways can interact at various crosstalk points and different levels of gene expression within a sophisticated network. 展开更多
关键词 abscisic acid functional polymorphism MAIZE RECEPTOR SIGNALING
下载PDF
Genome-wide characterization of early response genes to abscisic acid coordinating multiple pathways in Aegilops tauschii
16
作者 Yu Wei Liangjing Cao +7 位作者 Xucheng Huang Xuan Wang Huan Wang Yongchao Song Qiang He Mingjie Lyu Xinwen Hu Jun Liu 《The Crop Journal》 SCIE CSCD 2021年第4期934-944,共11页
The diploid wild goat grass Aegilops tauschii(Ae. tauschii, 2 n = 14;DD), as the D-sub genome of common wheat, provides rich germplasm resources for many aspects of wheat breeding. Abscisic acid(ABA) is an essential p... The diploid wild goat grass Aegilops tauschii(Ae. tauschii, 2 n = 14;DD), as the D-sub genome of common wheat, provides rich germplasm resources for many aspects of wheat breeding. Abscisic acid(ABA) is an essential phytohormone that plays a pivotal role in plant adaptation to abiotic stresses. However,the gene regulation network of Ae. tauschii in response to ABA stress remains unclear. Here, we conducted a time-course strand-specific RNA-sequencing study to globally profile the transcriptome that responded to ABA treatment in Ae. tauschii. We identified 4818 differentially expressed transcription units/genes with time-point-specific induction/repression patterns. Using functional annotation, one-to-one ortholog and comparative transcriptome profiling analyses, we identified 319 ABA-responsive Ae. tauschii orthologs that were also induced/repressed under ABA treatment in hexaploid wheat. On the quantitative trait loci(QTL) used in wheat marker-assisted breeding, we found that the ABA-responsive expression patterns of eight Ae. tauschii orthologs were associated with drought stress tolerance, flowering process and/or grain quality. Of them, the ABA-responsive gene encoding sucrose:sucrose 1-fructosyltransferase in fructan and glucose metabolism pathways showed the most significant association with wheat drought tolerance. The characterization of ABA early-responsive genes in this study provides valuable information for exploring the molecular functions of the regulatory genes and will assist in wheat breeding. 展开更多
关键词 WHEAT Aegilops tauschii TRANSCRIPTOME abscisic acid FRUCTAN
下载PDF
Roles of abscisic acid and gibberellins in maintaining primary and secondary dormancy of Korean pine seeds
17
作者 Yuan Song Jiaojun Zhu Qiaoling Yan 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第6期2423-2434,共12页
Primary dormancy of seeds of Korean pine(Pinus koraiensis Sieb.et Zucc.)after dispersal in the autumn and the induction of secondary dormancy the fi rst summer following seed dispersal limit the regeneration of mixed ... Primary dormancy of seeds of Korean pine(Pinus koraiensis Sieb.et Zucc.)after dispersal in the autumn and the induction of secondary dormancy the fi rst summer following seed dispersal limit the regeneration of mixed broadleaved Korean pine forests in Northeast China.This study was to determine how changes in the levels of abscisic acid(ABA)and gibberellic acid(GA)maintain primary and secondary dormancy of Korean pine seeds under germination conditions.We transferred seeds with one of fi ve primary dormancy states or three secondary dormancy states to germination conditions and measured changes in the levels of ABA,GA 1+3(GA 1 and GA 3)and GA 4+7(GA 4 and GA 7)in the seed coat,megagametophyte and embryo during incubation.Seed coat ABA levels in primary dormant seeds(PDS)and ABA levels in various parts of secondary dormant seeds(SDS)gradually declined during incubation but were still higher than in seeds for which dormancy was progressively released.GA 4+7 and GA 1+3 levels in embryos greatly decreased 35%and 24%,respectively,during incubation of SDS,and thus,the ratio of ABA to GA 4+7 in embryos and megagametophytes signifi cantly increased.The ratio of ABA to GA 1+3 in various parts of SDS increased slightly during incubation.In contrast,in seeds for which secondary dormancy was already released,GA 4+7 and GA 1+3 levels in the embryo,GA 4+7/ABA ratio in the embryo and seed coat,and the GA 1+3/ABA in the embryo and megagametophyte signifi cantly increased during incubation.There was no trend in the changes in the levels of ABA,GA 4+7 or GA 1+3 in embryos and megagametophytes of PDS or the levels of GA 4+7 or GA 1+3 in megagametophytes of SDS during incubation.The results suggest that high ABA levels in the seed coat maintain primary dormancy of Korean pine seeds.Maintenance of secondary dormancy involves a reduction of GA 4+7,GA 1+3,GA 4+7/ABA,and GA 1+3/ABA and the retention of high ABA levels. 展开更多
关键词 abscisic acid Gibberellic acid 4 and acid 7 Gibberellic acid 1 and acid 3 Korean pine Primary dormancy Secondary dormancy
下载PDF
Transcriptome Profiling of Abscisic Acid-Related Pathways in SNAC4/9-Silenced Tomato Fruits
18
作者 Yefang Liu Yanan Zhao +4 位作者 Liping Chai Jiaqian Zhou Sen Yang Xiaohong Kou Zhaohui Xue 《Transactions of Tianjin University》 EI CAS 2021年第6期473-486,共14页
The NAC(NAM,ATAF,and CUC)family is considered one of the largest families of plant transcription factor,and its members are involved in fruit ripening.Abscisic acid(ABA)has been demonstrated to modulate the fruit ripe... The NAC(NAM,ATAF,and CUC)family is considered one of the largest families of plant transcription factor,and its members are involved in fruit ripening.Abscisic acid(ABA)has been demonstrated to modulate the fruit ripening process.By applying the virus-induced gene silencing method and next-generation sequencing technology,we conducted a compara-tive analysis of the eff ects of SNAC4(SlNAC48,accession number:NM 001279348.2)and SNAC9(SlNAC19,accession number:XM 004236996.2)on tomato fruit ripening.The results of high-throughput sequencing identified 1262 significant(p<0.05)diff erentially expressed genes(DEGs)in SNAC4-silenced fruit compared to control fruit,while 655 DEGs were identified in SNAC9-silenced fruit.In addition,we selected 26 and 30 significant DEGs(p<0.05 and log 2-fold change>1.0)related to ABA in SNAC4-silenced and SNAC9-silenced tomatoes,respectively,for further analysis.The XET gene and two other genes(E8 and EXP1)were significantly down and upregulated in SNAC4-silenced tomatoes,respectively.However,the PYL9 gene and four other genes(PP2C,CYP707A2,EXPA6,and ACS6)were significantly down and upregulated in SNAC9-silenced tomatoes,respectively.In addition,ten DEGs were selected for use in tests to confirm the accuracy of the transcriptomic results by quantitative real-time polymerase chain reaction(qRT-PCR).Our results highlight the relationship between SNAC4/9 and ABA in the regulation of tomato ripening,which may help provide a theoretical basis for further research on the mechanisms of tomato fruit ripening and senescence. 展开更多
关键词 TOMATO RNA sequencing NAC transcription factor Virus-induced gene silencing abscisic acid
下载PDF
Reduced Sensitivity of Campomanesia adamantium(Cambess.)O.Berg Seeds to Desiccation:Effects of Polyethylene Glycol and Abscisic Acid
19
作者 Daiane Mugnol Dresch Tathiana Elisa Masetto +1 位作者 Tatiane Sanches Jeromini Silvana De Paula Quintao Scalon 《American Journal of Plant Sciences》 2017年第10期2501-2515,共15页
The Campomanesia adamantium is a threatened species from Brazil Savannah which seeds are desiccation-sensitive and do not withstand storage. This study aimed to reduce the sensitivity of Campomanesia adamantium seeds ... The Campomanesia adamantium is a threatened species from Brazil Savannah which seeds are desiccation-sensitive and do not withstand storage. This study aimed to reduce the sensitivity of Campomanesia adamantium seeds to desiccation using polyethylene glycol (PEG) and abscisic acid (ABA). Initially, seeds were subjected to PEG (0, -1.48, and -2.04 MPa) with or without ABA (100 μM) during 120 h, followed fast drying (silica gel) or slow drying (laboratory environment), at 20%, 15%, and 10% moisture content. In the second experiment, the seeds were PEG treated (-1.48 MPa) which provided the best results in the first experiment;the seeds were then subjected to different incubation times in PEG (30, 60, 90, or 120 h) and ABA (0, 10ˉ3, 10ˉ4, and 10ˉ5 μM), following the seeds were fast dried at 15% moisture content. The slow drying should be avoided, even in seeds previously subjected to osmotic conditioning with or without ABA. Seeds submitted to PEG treatment (-1.48 MPa/120h) without ABA and PEG (-1.48 MPa) with 10ˉ3 or 10ˉ4 μM of ABA (90 h), followed by fast drying at 15% moisture content showed reduction of desiccation sensitivity and high germination and vigor when compared to the other treatments. 展开更多
关键词 abscisic acid Osmotic Conditioning Polyethylene Glycol Water Stress
下载PDF
Research and Applicationon Plant Hormone--Abscisic Acid, ABA
20
作者 Tan Hong Li Zhidong(Chengdu Institute of Biology, the CAS) 《Bulletin of the Chinese Academy of Sciences》 1997年第4期309-310,共2页
Abscisic Acid (ABA), along with ethylene, gibberellins, cytokinins and auxins, is regarded as five kinds of important plant hormone. ABA was first isolated from cotton bud by Addcott Ohhuma’s group in 1963. Until 196... Abscisic Acid (ABA), along with ethylene, gibberellins, cytokinins and auxins, is regarded as five kinds of important plant hormone. ABA was first isolated from cotton bud by Addcott Ohhuma’s group in 1963. Until 1965, its plane structure was determined. It was formally named as Abscisic acid in "the International Conference of Plant Regulator" in 1967. Scientists all over the world have made a long-term unremitting effort 展开更多
关键词 ABA Research and Applicationon Plant Hormone abscisic acid
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部