The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo-...The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo- lation preprocessing, the sensitive zones of feedrate variations are processed with acceleration-deceleration control. By using the proposed algorithm, the machining accuracy is guaranteed and the feedrate is adaptively adjusted to he smoothed. The mechanical shock imposed in the servo system is avoided by the first and the second time derivatives of feedrates. A simulation of NURBS interpolation is given to demonstrate the validity and the effectiveness of the algorithm. The proposed interpolator can also be applied to the trajectory planning of the other parametric curves.展开更多
To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed c...To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.展开更多
Generally complex 3D contours are divided into a lot of continuous small line blocks by CAD/CAM software. When these small line blocks are used in conventional way,machine tool has to stop at the end of one move befor...Generally complex 3D contours are divided into a lot of continuous small line blocks by CAD/CAM software. When these small line blocks are used in conventional way,machine tool has to stop at the end of one move before continuing on to the next to meet accuracy requirement,which results in inefficiency.Look-ahead is an intelligent function that aims at adjusting the feed rate automatically to achieve maximum productivity while maintaining accuracy.By now most researchers just utilize the simplest linear acceleration(ACC)and deceleration(DEC)to deal with look-ahead intelligence.A generalized ACC/DEC ap- proach and corresponding optimal look-ahead algorithm based on dynamic back tracking along a doubly linked list are proposed.An improved rounding strategy for reducing interpolation errors is also presented.By using the proposed techniques,arbitrary velocity profiles that offer look-ahead feature and have the desired ACC/DEC characteristics for movement of a lot of continuous line blocks can be generated efficiently.Both simulations and experiments showed the productivity was dramatically increased without sacri- fice of accuracy.展开更多
The global oceanic/atmospheric tides exert decelerating/accelerating secular torques on the Earth rotation. We developed new formulations to accurately calculate amounts of two kinds of secular tidal torques. After Me...The global oceanic/atmospheric tides exert decelerating/accelerating secular torques on the Earth rotation. We developed new formulations to accurately calculate amounts of two kinds of secular tidal torques. After Melchior, we found that an additional factor 1+k-l = 1.216, which has been formerly neglected, must be multiplied unto the tidal torque integral. By using our refined formulations and the recent oceanic/atmospheric global tide models, we found that:(i) semidiurnal oceanic lunar/solar tides exert decelerating torques of about-4.462 × 10^(16)/-0.676 × 10^(16) Nm respectively and(ii) atmospheric S_2 tide exerts accelerating torque of 1.55 × 10^(15) Nm. Former estimates of the atmospheric S_2 tidal torque were twice as large as our estimate due to improper consideration of loading effect. We took the load Love number for atmospheric loading effect from Guo et al.(2004). For atmospheric loading of spherical harmonic degree two, the value of k′=-0.6031 is different from that for ocean loading as k′ =-0.3052,while the latter is currently used for both cases-ocean/atmospheric loading-without distinction. We discuss(i) the amount of solid Earth tidal dissipation(which has been left most uncertain) and(ii) secular changes of the dynamical state of the Earth-Moon-Sun system. Our estimate of the solid Earth tidal torque is-4.94×10^(15) Nm.展开更多
An improved genetic algorithm and its application to resolve cutting stock problem arc presented. It is common to apply simple genetic algorithm (SGA) to cutting stock problem, but the huge amount of computing of SG...An improved genetic algorithm and its application to resolve cutting stock problem arc presented. It is common to apply simple genetic algorithm (SGA) to cutting stock problem, but the huge amount of computing of SGA is a serious problem in practical application. Accelerating genetic algorithm (AGA) based on integer coding and AGA's detailed steps are developed to reduce the amount of computation, and a new kind of rectangular parts blank layout algorithm is designed for rectangular cutting stock problem. SGA is adopted to produce individuals within given evolution process, and the variation interval of these individuals is taken as initial domain of the next optimization process, thus shrinks searching range intensively and accelerates the evaluation process of SGA. To enhance the diversity of population and to avoid the algorithm stagnates at local optimization result, fixed number of individuals are produced randomly and replace the same number of parents in every evaluation process. According to the computational experiment, it is observed that this improved GA converges much sooner than SGA, and is able to get the balance of good result and high efficiency in the process of optimization for rectangular cutting stock problem.展开更多
The distinguishing feature of a vertical ball screw feed system without counterweight is that the spindle system weight directly acts on the kinematic joints.Research into the dynamic characteristics under acceleratio...The distinguishing feature of a vertical ball screw feed system without counterweight is that the spindle system weight directly acts on the kinematic joints.Research into the dynamic characteristics under acceleration and deceleration is an important step in improving the structural performance of vertical milling machines.The magnitude and direction of the inertial force change significantly when the spindle system accelerates and decelerates.Therefore,the kinematic joint contact stiffness changes under the action of the inertial force and the spindle system weight.Thus,the system transmission stiffness also varies and affects the dynamics.In this study,a variable-coefficient lumped parameter dynamic model that considers the changes in the spindle system weight and the magnitude and direction of the inertial force is established for a ball screw feed system without counterweight.In addition,a calculation method for the system stiffness is provided.Experiments on a vertical ball screw feed system under acceleration and deceleration with different accelerations are also performed to verify the proposed dynamic model.Finally,the influence of the spindle system position,the rated dynamic load of the screw-nut joint,and the screw tension force on the natural frequency of the vertical ball screw feed system under acceleration and deceleration are studied.The results show that the vertical ball screw feed system has obviously different variable dynamics under acceleration and deceleration.The influence of the rated dynamic load and the spindle system position on the natural frequency under acceleration and deceleration is much greater than that of the screw tension force.展开更多
In multi-agent systems, joint-action must be employed to achieve cooperation because the evaluation of the behavior of an agent often depends on the other agents’ behaviors. However, joint-action reinforcement learni...In multi-agent systems, joint-action must be employed to achieve cooperation because the evaluation of the behavior of an agent often depends on the other agents’ behaviors. However, joint-action reinforcement learning algorithms suffer the slow convergence rate because of the enormous learning space produced by joint-action. In this article, a prediction-based reinforcement learning algorithm is presented for multi-agent cooperation tasks, which demands all agents to learn predicting the probabilities of actions that other agents may execute. A multi-robot cooperation experiment is run to test the efficacy of the new algorithm, and the experiment results show that the new algorithm can achieve the cooperation policy much faster than the primitive reinforcement learning algorithm.展开更多
During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decisi...During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decision-makers how to conduct correct evaluation on a business and how to make strategy adjustment and selection according to the evaluation. Based on the qualitative and quantitative method, the paper introduces the Projection Pursuit Classification (PPC) model based on the Real-coded Accelerating Genetic Algorithm (RAGA) into the process of enterprises' strategy evaluation and selection. The characteristic of PPC model is that it ultimately overcomes the influence of the proportion of subjectivity and avoids precocious convergence, thus providing a new objective method for strategy evaluation and selection by pursuing the most objective strategy evaluation to make the relatively sensible strategy portfolio and action.展开更多
High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play...High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.展开更多
With the rapid development and popularization of artificial intelligence technology,convolutional neural network(CNN)is applied in many fields,and begins to replace most traditional algorithms and gradually deploys to...With the rapid development and popularization of artificial intelligence technology,convolutional neural network(CNN)is applied in many fields,and begins to replace most traditional algorithms and gradually deploys to terminal devices.However,the huge data movement and computational complexity of CNN bring huge power consumption and performance challenges to the hardware,which hinders the application of CNN in embedded devices such as smartphones and smart cars.This paper implements a convolutional neural network accelerator based on Winograd convolution algorithm on field-programmable gate array(FPGA).Firstly,a convolution kernel decomposition method for Winograd convolution is proposed.The convolution kernel larger than 3×3 is divided into multiple 3×3 convolution kernels for convolution operation,and the unsynchronized long convolution operation is processed.Then,we design Winograd convolution array and use configurable multiplier to flexibly realize multiplication for data with different accuracy.Experimental results on VGG16 and AlexNet network show that our accelerator has the most energy efficient and 101 times that of the CPU,5.8 times that of the GPU.At the same time,it has higher energy efficiency than other convolutional neural network accelerators.展开更多
This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing ...This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing into the combined power of TVAC(Time-Variant Acceleration Coefficients)and IW(Inertial Weight).Proposed algorithm has been tested against linear,non-linear,traditional,andmultiswarmbased optimization algorithms.An experimental study is performed in two stages to assess the proposed PLTVACIW-PSO.Phase I uses 12 recognized Standard Benchmarks methods to evaluate the comparative performance of the proposed PLTVACIWPSO vs.IW based Particle Swarm Optimization(PSO)algorithms,TVAC based PSO algorithms,traditional PSO,Genetic algorithms(GA),Differential evolution(DE),and,finally,Flower Pollination(FP)algorithms.In phase II,the proposed PLTVACIW-PSO uses the same 12 known Benchmark functions to test its performance against the BAT(BA)and Multi-Swarm BAT algorithms.In phase III,the proposed PLTVACIW-PSO is employed to augment the feature selection problem formedical datasets.This experimental study shows that the planned PLTVACIW-PSO outpaces the performances of other comparable algorithms.Outcomes from the experiments shows that the PLTVACIW-PSO is capable of outlining a feature subset that is capable of enhancing the classification efficiency and gives the minimal subset of the core features.展开更多
Severe fluctuation of the effective roll gap in the acceleration and deceleration section of the cold rolling process is a significant factor causing thickness deviation.However,the conventional roll gap compensation ...Severe fluctuation of the effective roll gap in the acceleration and deceleration section of the cold rolling process is a significant factor causing thickness deviation.However,the conventional roll gap compensation method and control strategy do not meet the stringent strip quality requirements.The roll gap model in the acceleration and deceleration process is studied to increase the thickness control precision.In order to improve model accuracy,a roll gap prediction method based on data-driven is proposed.Given the complexities of the cold rolling process,the extreme gradient boosting(XGBoost)method is used to predict the roll gap model as the rolling speed changes.Meanwhile,support vector regression and neural network-based methods are taken to evaluate and compare the prediction performances.Based on the field data,the simulation experiments are carried out.It demonstrated that the prediction performance of the proposed method outperformed the other two methods.The values of root mean square error,determination coefficient value,mean absolute percentage error and mean absolute error obtained from the XGBoost model were equal to 0.000346,0.952,7.02,and 0.00028,respectively.In addition,the proposed method analyzed the contribution rates of the rolling affecting parameters on the roll gap.The data showed that in the controllable rolling parameters,the rolling speed is the most impacting factor that disturbs the roll gap model in the acceleration and deceleration process,which can provide a useful direction for actual roll gap adjustment.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2003005)~~
文摘The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo- lation preprocessing, the sensitive zones of feedrate variations are processed with acceleration-deceleration control. By using the proposed algorithm, the machining accuracy is guaranteed and the feedrate is adaptively adjusted to he smoothed. The mechanical shock imposed in the servo system is avoided by the first and the second time derivatives of feedrates. A simulation of NURBS interpolation is given to demonstrate the validity and the effectiveness of the algorithm. The proposed interpolator can also be applied to the trajectory planning of the other parametric curves.
基金the Hi-Tech Research and Development Pro-gram (863) of China (No. 2006AA04Z233)the National NaturalScience Foundation of China (No. 50575205)the Natural ScienceFoundation of Zhejiang Province (Nos. Y104243 and Y105686),China
文摘To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.
文摘Generally complex 3D contours are divided into a lot of continuous small line blocks by CAD/CAM software. When these small line blocks are used in conventional way,machine tool has to stop at the end of one move before continuing on to the next to meet accuracy requirement,which results in inefficiency.Look-ahead is an intelligent function that aims at adjusting the feed rate automatically to achieve maximum productivity while maintaining accuracy.By now most researchers just utilize the simplest linear acceleration(ACC)and deceleration(DEC)to deal with look-ahead intelligence.A generalized ACC/DEC ap- proach and corresponding optimal look-ahead algorithm based on dynamic back tracking along a doubly linked list are proposed.An improved rounding strategy for reducing interpolation errors is also presented.By using the proposed techniques,arbitrary velocity profiles that offer look-ahead feature and have the desired ACC/DEC characteristics for movement of a lot of continuous line blocks can be generated efficiently.Both simulations and experiments showed the productivity was dramatically increased without sacri- fice of accuracy.
基金supported by the Space Geodesy Technology Development Program of Korea Astronomy and Space Science Institutesupported by the NSFC(grant Nos.41631072,41721003,41574007 and 41429401)the Discipline Innovative Engineering Plan of Modern Geodesy and Geodynamics(grant No.B17033)
文摘The global oceanic/atmospheric tides exert decelerating/accelerating secular torques on the Earth rotation. We developed new formulations to accurately calculate amounts of two kinds of secular tidal torques. After Melchior, we found that an additional factor 1+k-l = 1.216, which has been formerly neglected, must be multiplied unto the tidal torque integral. By using our refined formulations and the recent oceanic/atmospheric global tide models, we found that:(i) semidiurnal oceanic lunar/solar tides exert decelerating torques of about-4.462 × 10^(16)/-0.676 × 10^(16) Nm respectively and(ii) atmospheric S_2 tide exerts accelerating torque of 1.55 × 10^(15) Nm. Former estimates of the atmospheric S_2 tidal torque were twice as large as our estimate due to improper consideration of loading effect. We took the load Love number for atmospheric loading effect from Guo et al.(2004). For atmospheric loading of spherical harmonic degree two, the value of k′=-0.6031 is different from that for ocean loading as k′ =-0.3052,while the latter is currently used for both cases-ocean/atmospheric loading-without distinction. We discuss(i) the amount of solid Earth tidal dissipation(which has been left most uncertain) and(ii) secular changes of the dynamical state of the Earth-Moon-Sun system. Our estimate of the solid Earth tidal torque is-4.94×10^(15) Nm.
基金This project is supported by National Natural Science Foundation of China (No.50575153)Provincial Key Technology Projects of Sichuan, China (No.03GG010-002)
文摘An improved genetic algorithm and its application to resolve cutting stock problem arc presented. It is common to apply simple genetic algorithm (SGA) to cutting stock problem, but the huge amount of computing of SGA is a serious problem in practical application. Accelerating genetic algorithm (AGA) based on integer coding and AGA's detailed steps are developed to reduce the amount of computation, and a new kind of rectangular parts blank layout algorithm is designed for rectangular cutting stock problem. SGA is adopted to produce individuals within given evolution process, and the variation interval of these individuals is taken as initial domain of the next optimization process, thus shrinks searching range intensively and accelerates the evaluation process of SGA. To enhance the diversity of population and to avoid the algorithm stagnates at local optimization result, fixed number of individuals are produced randomly and replace the same number of parents in every evaluation process. According to the computational experiment, it is observed that this improved GA converges much sooner than SGA, and is able to get the balance of good result and high efficiency in the process of optimization for rectangular cutting stock problem.
基金Supported by Key Program of National Natural Science Foundation of China(Grant No.51235009)National Natural Science Foundation of China(Grant No.51605374).
文摘The distinguishing feature of a vertical ball screw feed system without counterweight is that the spindle system weight directly acts on the kinematic joints.Research into the dynamic characteristics under acceleration and deceleration is an important step in improving the structural performance of vertical milling machines.The magnitude and direction of the inertial force change significantly when the spindle system accelerates and decelerates.Therefore,the kinematic joint contact stiffness changes under the action of the inertial force and the spindle system weight.Thus,the system transmission stiffness also varies and affects the dynamics.In this study,a variable-coefficient lumped parameter dynamic model that considers the changes in the spindle system weight and the magnitude and direction of the inertial force is established for a ball screw feed system without counterweight.In addition,a calculation method for the system stiffness is provided.Experiments on a vertical ball screw feed system under acceleration and deceleration with different accelerations are also performed to verify the proposed dynamic model.Finally,the influence of the spindle system position,the rated dynamic load of the screw-nut joint,and the screw tension force on the natural frequency of the vertical ball screw feed system under acceleration and deceleration are studied.The results show that the vertical ball screw feed system has obviously different variable dynamics under acceleration and deceleration.The influence of the rated dynamic load and the spindle system position on the natural frequency under acceleration and deceleration is much greater than that of the screw tension force.
文摘In multi-agent systems, joint-action must be employed to achieve cooperation because the evaluation of the behavior of an agent often depends on the other agents’ behaviors. However, joint-action reinforcement learning algorithms suffer the slow convergence rate because of the enormous learning space produced by joint-action. In this article, a prediction-based reinforcement learning algorithm is presented for multi-agent cooperation tasks, which demands all agents to learn predicting the probabilities of actions that other agents may execute. A multi-robot cooperation experiment is run to test the efficacy of the new algorithm, and the experiment results show that the new algorithm can achieve the cooperation policy much faster than the primitive reinforcement learning algorithm.
文摘During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decision-makers how to conduct correct evaluation on a business and how to make strategy adjustment and selection according to the evaluation. Based on the qualitative and quantitative method, the paper introduces the Projection Pursuit Classification (PPC) model based on the Real-coded Accelerating Genetic Algorithm (RAGA) into the process of enterprises' strategy evaluation and selection. The characteristic of PPC model is that it ultimately overcomes the influence of the proportion of subjectivity and avoids precocious convergence, thus providing a new objective method for strategy evaluation and selection by pursuing the most objective strategy evaluation to make the relatively sensible strategy portfolio and action.
基金supported by the Science and Technology Major Project of Hubei Province,China (No.2021AFB001).
文摘High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.
基金supported by the Project of the State Grid Corporation of China in 2022(No.5700-201941501A-0-0-00)the National Natural Science Foundation of China(No.U21B2031).
文摘With the rapid development and popularization of artificial intelligence technology,convolutional neural network(CNN)is applied in many fields,and begins to replace most traditional algorithms and gradually deploys to terminal devices.However,the huge data movement and computational complexity of CNN bring huge power consumption and performance challenges to the hardware,which hinders the application of CNN in embedded devices such as smartphones and smart cars.This paper implements a convolutional neural network accelerator based on Winograd convolution algorithm on field-programmable gate array(FPGA).Firstly,a convolution kernel decomposition method for Winograd convolution is proposed.The convolution kernel larger than 3×3 is divided into multiple 3×3 convolution kernels for convolution operation,and the unsynchronized long convolution operation is processed.Then,we design Winograd convolution array and use configurable multiplier to flexibly realize multiplication for data with different accuracy.Experimental results on VGG16 and AlexNet network show that our accelerator has the most energy efficient and 101 times that of the CPU,5.8 times that of the GPU.At the same time,it has higher energy efficiency than other convolutional neural network accelerators.
基金funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing into the combined power of TVAC(Time-Variant Acceleration Coefficients)and IW(Inertial Weight).Proposed algorithm has been tested against linear,non-linear,traditional,andmultiswarmbased optimization algorithms.An experimental study is performed in two stages to assess the proposed PLTVACIW-PSO.Phase I uses 12 recognized Standard Benchmarks methods to evaluate the comparative performance of the proposed PLTVACIWPSO vs.IW based Particle Swarm Optimization(PSO)algorithms,TVAC based PSO algorithms,traditional PSO,Genetic algorithms(GA),Differential evolution(DE),and,finally,Flower Pollination(FP)algorithms.In phase II,the proposed PLTVACIW-PSO uses the same 12 known Benchmark functions to test its performance against the BAT(BA)and Multi-Swarm BAT algorithms.In phase III,the proposed PLTVACIW-PSO is employed to augment the feature selection problem formedical datasets.This experimental study shows that the planned PLTVACIW-PSO outpaces the performances of other comparable algorithms.Outcomes from the experiments shows that the PLTVACIW-PSO is capable of outlining a feature subset that is capable of enhancing the classification efficiency and gives the minimal subset of the core features.
基金supported by the National Natural Science Foundation of China(Grant Nos.U21A20117 and 52074085)the Liao Ning Revitalization Talents Program(XLYC1907065)+1 种基金Liao Ning Province Doctoral Initiation Fund(2022-BS-188)Open Research Fund from State Key Laboratory of Rolling and Automation(No.2021RALKFKT006).
文摘Severe fluctuation of the effective roll gap in the acceleration and deceleration section of the cold rolling process is a significant factor causing thickness deviation.However,the conventional roll gap compensation method and control strategy do not meet the stringent strip quality requirements.The roll gap model in the acceleration and deceleration process is studied to increase the thickness control precision.In order to improve model accuracy,a roll gap prediction method based on data-driven is proposed.Given the complexities of the cold rolling process,the extreme gradient boosting(XGBoost)method is used to predict the roll gap model as the rolling speed changes.Meanwhile,support vector regression and neural network-based methods are taken to evaluate and compare the prediction performances.Based on the field data,the simulation experiments are carried out.It demonstrated that the prediction performance of the proposed method outperformed the other two methods.The values of root mean square error,determination coefficient value,mean absolute percentage error and mean absolute error obtained from the XGBoost model were equal to 0.000346,0.952,7.02,and 0.00028,respectively.In addition,the proposed method analyzed the contribution rates of the rolling affecting parameters on the roll gap.The data showed that in the controllable rolling parameters,the rolling speed is the most impacting factor that disturbs the roll gap model in the acceleration and deceleration process,which can provide a useful direction for actual roll gap adjustment.