Conogethes punctiferalis is a crop and fruit pest that has caused serious economic losses to agricultural production.This pest relies heavily on its sex pheromone to ensure sexual encounters and subsequent mating succ...Conogethes punctiferalis is a crop and fruit pest that has caused serious economic losses to agricultural production.This pest relies heavily on its sex pheromone to ensure sexual encounters and subsequent mating success.However,the molecular mechanism underlying sex pheromone biosynthesis in this species remains elusive.The present study investigated the detailed mechanism underlying PBAN-regulated sex pheromone biosynthesis in C.punctiferalis by transcriptome sequencing of the C.punctiferalis pheromone glands(PGs)and subsequent functional identification of the target genes.The results showed that female mating started from the first scotophase,and peaked at the second to fifth scotophases in accordance with the release of sex pheromones.PBAN regulated sex pheromone biosynthesis by employing Ca^(2+)and cAMP as secondary messengers,as demonstrated by RNA interference(RNAi),pharmacological inhibitors,and behavioral assays.Further investigation revealed that calcineurin(CaN)and acetyl-CoA carboxylase(ACC)were activated by PBAN/Ca^(2+)signaling,and the RNAimediated knockdown of CaN and ACC transcripts significantly reduced sex pheromone production,ultimately leading to a significantly reduced ability of females to attract males.Importantly,hexokinase(HK)was found to regulate sex pheromone biosynthesis in response to the PBAN/cAMP/PKA signaling pathway,as demonstrated by RNAi,enzyme activity,and pharmacological inhibitor assays.Furthermore,Far2 and Desaturase1 were found to participate in PBAN-regulated sex pheromone biosynthesis.Altogether,our findings revealed that PBAN regulates sex pheromone biosynthesis through the PBANR/Ca^(2+)/CaN/ACC and PBANR/cAMP/PKA/HK pathways in C.punctiferalis,which enriches our comprehension of the details of sex pheromone biosynthesis in moths.展开更多
De novo lipogenesis(DNL)plays an important role in the pathogenesis of hepatic steatosis and also appears to be implicated in hepatic inflammation and fibrosis.Accordingly,the inhibition of acetyl-CoA carboxylase,whic...De novo lipogenesis(DNL)plays an important role in the pathogenesis of hepatic steatosis and also appears to be implicated in hepatic inflammation and fibrosis.Accordingly,the inhibition of acetyl-CoA carboxylase,which catalyzes the ratelimiting step of DNL,might represent a useful approach in the management of patients with nonalcoholic fatty liver disease(NAFLD).Animal studies and preliminary data in patients with NAFLD consistently showed an improvement in steatosis with the use of these agents.However,effects on fibrosis were variable and an increase in plasma triglyceride levels was observed.Therefore,more longterm studies are needed to clarify the role of these agents in NAFLD and to determine their risk/benefit profile.展开更多
Objective:To characterize the Entamoeba histolytica(E.histolytica)antigen(s)recognized by moribound amoebic liver abscess hamsters.Methods:Crude soluble antigen of E.histolytica was probed with sera of moribund hamste...Objective:To characterize the Entamoeba histolytica(E.histolytica)antigen(s)recognized by moribound amoebic liver abscess hamsters.Methods:Crude soluble antigen of E.histolytica was probed with sera of moribund hamsters in 1D-and 2D-Westem blot analyses.The antigenic protein was then sent for tandem mass spectrometry analysis.The corresponding gene was cloned and expressed in Escherichia coli BL21-AI to produce the recombinant E.histolytica ADP-forming acetyl-CoA synthetase(EhACS)protein.A customised ELISA was developed to evaluate the sensitivity and specificity of the recombinant protein.Results:A^75 kDa protein band with a pl value of 5.91-6.5 was found to be antigenic;and not detected by sera of hamsters in the control group.Tandem mass spectrometry analysis revealed the protein to be the 77 kDa E.histolytica ADP-forming acetyl-CoA synthetase(EhACS).The customised ELISA results revealed 100%sensitivity and 100%specificity when tested against infected(n=31)and control group hamsters(n=5)serum samples,respectively.Conclusions:This rinding suggested the significant role of EhACS as a biomarker for moribund hamsters with acute amoebic liver abscess(ALA)infection.It is deemed pertinent that future studies explore the potential roles of EhACS in better understanding the pathogenesis of ALA;and in the development of vaccine and diagnostic tests to control ALA in human populations.展开更多
The entire gene of carboxyltransferase(CT) domain of acetyl-CoA carboxylase(ACCase) from Chinese Spring wheat(CSW) plastid was cloned firstly, and the 2.3 kb gene was inserted into PET28a^+ vector and expressed...The entire gene of carboxyltransferase(CT) domain of acetyl-CoA carboxylase(ACCase) from Chinese Spring wheat(CSW) plastid was cloned firstly, and the 2.3 kb gene was inserted into PET28a^+ vector and expressed in E. coil in a soluble state. The (His)6 fusion protein was identified by SDS-PAGE and Western blot. The recombinant protein was purified by affinity chromatography, and the calculated molecular mass(Mr) was 88000. The results of the sequence analysis indicate that the cloned gene(GeneBank accession No. EU124675) was a supplement and revision of the reported ACCase CT partial cDNA from Chinese Spring wheat plastid. The recombinant protein will be significant for us to investigate the recognizing mechanism between ACCase and herbicides, and further to screen new herbicides.展开更多
This study was conducted using seeds in Petri dish containing agar medium in order to determine acetyl-CoA carboxylase (ACCase) herbicides resistance (R) in Avena sterilis that was grown in wheat fields at Adana p...This study was conducted using seeds in Petri dish containing agar medium in order to determine acetyl-CoA carboxylase (ACCase) herbicides resistance (R) in Avena sterilis that was grown in wheat fields at Adana province, Turkey. Seeds were collected from one large suspected field, where clodinafop-propargyl (Aryloxyphenoxypropionate “FOPs”) and pinoxaden (Phenylpyrazoline “DEN”) have been applied for many years. Susceptible (S) population was collected from the road side on the same region. Agar media of concentration 14 g/L was prepared and it was melted in microwave. Then the amount of 20 mL agar media was added into each Petri dish. Five seeds were placed on agar mediums containing discriminating dose of clodinafop and pinoxaden. Petri dishes were placed in growth incubator operating at 10 °C. After 15 d, both radicle and hypocotyl length were measured. The percentage of germinated seed and dose-response curves were determined. At these different concentration levels, there were more than 50% of R and less than 40% of S seed germinated for pinoxaden. However, for clodinafop, more than 60% of R and less than 50% of S seeds were germinated. At higher concentration levels, the populations of resistant and susceptible were not germinated for both herbicides. The resistance value of R population was then compared with that of the S biotype. From the resistance index (RI), the population was more resistant to pinoxaden (7.43 for radicle and 2.47 for hypocotyl) than the clodinafop-propagyl (1.39 for radicle and 3.77 for hypocotyl). The method provided a simple, quick and cost effective way to identify ACCase herbicides resistance in most grass weeds.展开更多
Dietary macronutrients and micronutrients play important roles in human health.On the other hand,the excessive energy derived from food is stored in the form of triacylglycerol.A variety of dietary and hormonal factor...Dietary macronutrients and micronutrients play important roles in human health.On the other hand,the excessive energy derived from food is stored in the form of triacylglycerol.A variety of dietary and hormonal factors affect this process through the regulation of the activities and expression levels of those key player enzymes involved in fatty acid biosynthesis such as acetyl-CoA carboxylase,fatty acid synthase,fatty acid elongases,and desaturases.As a micronutrient,vitamin A is essential for the health of humans.Recently,vitamin A has been shown to play a role in the regulation of glucose and lipid metabolism.This review summarizes recent research progresses about the roles of vitamin A in fatty acid synthesis.It focuses on the effects of vitamin A on the activities and expression levels of mRNA and proteins of key enzymes for fatty acid synthesis in vitro and in vivo.It appears that vitamin A status and its signaling pathway regulate the expression levels of enzymes involved in fatty acid synthesis.Future research directions are also discussed.展开更多
Synthetic biology is constantly making progress for producing compounds on demand.Recently,Yocum and collaborators have developed an outstanding approach based on the anchoring of biosynthetic enzymes to the peroxisom...Synthetic biology is constantly making progress for producing compounds on demand.Recently,Yocum and collaborators have developed an outstanding approach based on the anchoring of biosynthetic enzymes to the peroxisomal membrane.This allowed access to an untapped resource of acetyl-CoA and stimulated the synthesis of a valuable polyketide.展开更多
Acetyl triacylglycerol (acetyl-TAG) containing acetyl at sn-3 position is rare in nature. It is optically active asymmetric TAG with low viscosity, having improved cold temperature property and low calorific content c...Acetyl triacylglycerol (acetyl-TAG) containing acetyl at sn-3 position is rare in nature. It is optically active asymmetric TAG with low viscosity, having improved cold temperature property and low calorific content compared to regular TAGs. It gains increasingly attentions due to its potential applications. Metabolic engineering of plant or microorganism for production of acetyl-TAG is currently attractive. Here we summarize the researches on acetyl-TAG, with emphasis on gene discovery, protein analysis and its potential applications. Comprehensive understanding of current development in acetyl-TAG biosynthesis pathway may contribute to the increase of production and more applications.展开更多
Lipid and sugar homeostasis is critical for insect development and survival.In this study,we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica(BgACC)that is involved in both lipogenesis and su...Lipid and sugar homeostasis is critical for insect development and survival.In this study,we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica(BgACC)that is involved in both lipogenesis and sugar homeostasis.We found that BgACC was dominantly expressed in the fat body and integument,and was significantly upregulated after molting.Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage,but it caused a lethal phenotype during adult emergence.BgACC-RNA interference(RNAi)significantly downregulated total free fatty acid(FFA)and triacylglycerol(TAG)levels,and also caused a significant decrease of cuticular hydrocarbons(CHCs).Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females,but BgACC-RNAi did not affect the reproductive ability of males.Interestingly,knockdown of BgACC also changed the expression of insulin-like peptide genes(BglLPs),which mimicked a physiological state of high sugar uptake.In addition,BgACC was upregulated when B.germanica were fed on a high sucrose diet,and repression of BgACC upregulated the expression of the glycogen synthase gene(BgGlyS).Moreover,BgACC-RNAi increased the circulating sugar levels and glycogen storage,and a longevity assay suggested that BgACC was important for the survival of B.germanica under conditions of high sucrose uptake.Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes,which further modulates insect reproduction and sugar tolerance.This study benefits our understanding of the crosstalk between lipid and sugar metabolism.展开更多
The symbiotic relationship between the host and microbiota is widely acknowledged as mutually beneficial.However,due to significant differences in metabolic substrates and products between prokaryotic bacteria and mam...The symbiotic relationship between the host and microbiota is widely acknowledged as mutually beneficial.However,due to significant differences in metabolic substrates and products between prokaryotic bacteria and mammalian cells,mechanisms must exist to reconcile the metabolic incompatibility between the host and microbiota.We report that host enzymes are required to detoxify gut microbiota-derived acetate to maintain male fertility in mice.The combined deletion of acetyl-CoA synthetase short-chain family member 1 and 2(ACSS1 and ACSS2),two enzymes consuming acetate in mammals,leads to excessive accumulation of acetate in circulation.This accumulation causes metabolic acidosis,blocking spermatogenesis and rendering male mice infertile.ACSS1/2-deficient germ cells exhibit comprehensive metabolic alterations with nicotinamide adenine dinucleotide(NAD+)deficiency that impairs betaine production.Supplementation with betaine restores spermatogenesis and fertility in ACSS1/2-deficient mice.Thus,the inevitable production of acetate by gut bacteria and its reproductive toxicity to the host represents an unappreciated metabolic incompatibility between the host and microbiota,which is reconciled by ACSS1/2.展开更多
This paper focuses on the group of metalloproteins/metalloenzymes in the acetyl-coenzyme A synthesis pathway of anaerobic microbes called Wood-Ljungdahl pathway,including formate dehydrogenase (FDH),corrinoid iron sul...This paper focuses on the group of metalloproteins/metalloenzymes in the acetyl-coenzyme A synthesis pathway of anaerobic microbes called Wood-Ljungdahl pathway,including formate dehydrogenase (FDH),corrinoid iron sulfur protein (CoFeSP),acetyl-CoA synthase (ACS) and CO dehydrogenase (CODH). FDH,a key metalloenzyme involved in the conversion of carbon dioxide to methyltetrahydrofolate,catalyzes the reversible oxidation of formate to carbon dioxide. CoFeSP,as a methyl group transformer,accepts the methyl group from CH3-H4 folate and then transfers it to ACS. CODH reversibly catalyzes the reduction of CO2 to CO and ACS functions for acetyl-coenzyme A synthesis through condensation of the methyl group,CO and coenzyme A,to finish the whole pathway. This paper introduces the structure,function and reaction mechanisms of these enzymes.展开更多
10-DeacetylbaccatinⅢ(10-DAB)C10 acetylation is an indispensable procedure for Taxol semi-synthesis,which often requires harsh conditions.10-DeacetylbaccatinⅢ-10-β-O-acetyltransferase(DBAT)catalyzes the acetylation ...10-DeacetylbaccatinⅢ(10-DAB)C10 acetylation is an indispensable procedure for Taxol semi-synthesis,which often requires harsh conditions.10-DeacetylbaccatinⅢ-10-β-O-acetyltransferase(DBAT)catalyzes the acetylation but acetyl-CoA supply remains a key limiting factor.Here we refactored the innate biosynthetic pathway of acetyl-CoA in Escherichia coli and obtained a chassis with acetyl-CoA productivity over three times higher than that of the host cell.Then,we constructed a microbial cell factory by introducing DBAT gene into this chassis for efficiently converting 10-DAB into baccatinⅢ.We found that baccatinⅢcould be efficiently deacetylated into 10-DAB by DBAT with CoASH and K+under alkaline condition.Thus,we fed acetic acid to the engineered strain both for serving as a substrate of acetyl-CoA biosynthesis and for alleviating the deacetylation of baccatinⅢ.The fermentation conditions were optimized and the baccatinⅢtiters reached 2,3 and 4.6 g/L,respectively,in a 3-L bioreactor culture when 2,3 and 6 g/L of 10-DAB were supplied.Our study provides an environmentfriendly approach for the large scale 10-DAB acetylation without addition of acetyl-CoA in the industrial Taxol semi-synthesis.The finding of DBAT deacetylase activity may broaden its application in the structural modification of pharmaceutically important lead compounds.展开更多
T cells are one of few cell types in adult mammals that can proliferate extensively and differentiate diversely upon stimulation,which serves as an excellent example to dissect the metabolic basis of cell fate decisio...T cells are one of few cell types in adult mammals that can proliferate extensively and differentiate diversely upon stimulation,which serves as an excellent example to dissect the metabolic basis of cell fate decisions.During the last decade,there has been an explosion of research into the metabolic control of T-cell responses.The roles of common metabolic pathways,including glycolysis,lipid metabolism,and mitochondrial oxidative phosphorylation,in T-cell responses have been well characterized,and their mechanisms of action are starting to emerge.In this review,we present several considerations for T-cell metabolism-focused research,while providing an overview of the metabolic control of T-cell fate decisions during their life journey.We try to synthesize principles that explain the causal relationship between cellular metabolism and T-cell fate decision.We also discuss key unresolved questions and challenges in targeting T-cell metabolism to treat disease.展开更多
Bathyarchaeota is believed to play a crucial role in the global carbon cycle due to its vast biomass,broad distribution,and diverse habitat.However,its physiological and metabolic features are hard to determine withou...Bathyarchaeota is believed to play a crucial role in the global carbon cycle due to its vast biomass,broad distribution,and diverse habitat.However,its physiological and metabolic features are hard to determine without pure culture.While metagenomic analyses have shown that Bathyarchaeota has a complete inorganic carbon fixation(Wood-Ljungdahl,WL)pathway,no direct functional confirmation has been reported.To explore the inorganic carbon fixation ability of Bathyarchaeota,we used lignin and sodium bicarbonate-^(13)C(NaH^(13)CO_(3))in the long-term incubation of marine sediment samples.We found that Bathyarchaeota grew continuously in the cultivation system with lignin,and its abundance increased up to 15.3 times after10 months,increasing its fraction of all archaea from 30%to 80%.We monitored theδ^(13)C of total organic carbon to identify microbial carbon fixation in the cultivation systems,finding that it increased in the first month while NaH^(13)CO_(3)was present but only increased continuously afterward when lignin was also present.Furthermore,ultracentrifugation was performed on DNA extracted from samples at different cultivation stages to separate DNA of different buoyant densities,and bathyarchaeotal and bacterial 16S ribosomal RNA(r RNA)gene abundance were quantified using qPCR.Compared to bacteria,bathyarchaeotal 16S rRNA tended to be concentrated in heavy layers after 4 months of incubation with lignin and NaH^(13)CO_(3),indicating that Bathyarchaeota DNA contained^(13)C through proliferation based on lignin utilization and NaH^(13)CO_(3)assimilation,proving the carbon fixation capacity of Bathyarchaeota.展开更多
Glioblastoma(GBM)is a highly aggressive and lethal brain tumor with an immunosuppressive tumor microenvironment(TME).In this environment,myeloid cells,such as myeloid-derived suppressor cells(MDSCs),play a pivotal rol...Glioblastoma(GBM)is a highly aggressive and lethal brain tumor with an immunosuppressive tumor microenvironment(TME).In this environment,myeloid cells,such as myeloid-derived suppressor cells(MDSCs),play a pivotal role in suppressing antitumor immunity.Lipometabolism is closely related to the function of myeloid cells.Here,our study reports that acetyl-CoA acetyltransferase 1(ACAT1),the key enzyme of fatty acid oxidation(FAO)and ketogenesis,is significantly downregulated in the MDSCs infiltrated in GBM patients.To investigate the effects of ACAT1 on myeloid cells,we generated mice with myeloid-specific(LyzM-cre)depletion of ACAT1.The results show that these mice exhibited a remarkable accumulation of MDSCs and increased tumor progression both ectopically and orthotopically.The mechanism behind this effect is elevated secretion of C-X-C motif ligand 1(CXCLI)of macrophages(Mo).Overall,our findings demonstrate that ACAT1 could serve as a promising drug target for GBM by regulating the function of MDSCs in the TME.展开更多
3-Hydroxy-3-methylglutaryl-CoA synthase(HMGS) is the first committed enzyme in the MVA pathway and involved in the biosynthesis of terpenes in Tripterygium wilfordii. The full-length cDNA and a 515 bp RNAi target frag...3-Hydroxy-3-methylglutaryl-CoA synthase(HMGS) is the first committed enzyme in the MVA pathway and involved in the biosynthesis of terpenes in Tripterygium wilfordii. The full-length cDNA and a 515 bp RNAi target fragment of TwHMGS were ligated into the p H7 WG2 D and p K7 GWIWG2 D vectors to respectively overexpress and silence, Tw HMGS was overexpressed and silenced in T. wilfordii suspension cells using biolistic-gun mediated transformation, which resulted in 2-fold increase and a drop to70% in the expression level compared to cells with empty vector controls. During Tw HMGS overexpression, the expression of TwHMGR, TwDXR and TwTPS7 v2 was significantly upregulated to the control. In the RNAi group, the expression of Tw HMGR,TwDXS, TwDXR and TwMCT visibly displayed downregulation to the control. The cells with TwHMGS overexpressed produced twice higher than the control value. These results proved that differential expression of Tw HMGS determined the production of triptolide in T.wilfordii and laterally caused different trends of relative gene expression in the terpene biosynthetic pathway. Finally, the substrate acetyl-Co A was docked into the active site of TwHMGS, suggesting the key residues including His247, Lys256 and Arg296 undergo electrostatic or H-bond interactions with acetyl-CoA.展开更多
In plants, stomatal movements are tightly controlled by changes in cellular turgor pressure. Carbohydrates produced by glycolysis and the tricarboxylic acid cycle play an important role in regulating turgor pressure. ...In plants, stomatal movements are tightly controlled by changes in cellular turgor pressure. Carbohydrates produced by glycolysis and the tricarboxylic acid cycle play an important role in regulating turgor pressure. Here, we describe anArabidopsis mutant, bzul, isolated in a screen for elevated leaf temperature in response to drought stress, which displays smaller stomatal pores and higher drought resistance than wild-type plants. BZU1 encodes a known acetyl-coenzyme A synthetase, ACN1, which acts in the first step of a metabolic pathway converting acetate to malate in peroxisomes. We showed that BZUl/ACNl-mediated acetate-to-malate conversion provides a shunt that plays an important role in osmoregulation of stomatal turgor. We found that the smaller stomatal pores in the bzul mutant are a consequence of reduced accumu- lation of malate, which acts as an osmoticum and/or a signaling molecule in the control of turgor pressure within guard cells, and these results provided new genetic evidence for malate-regulated stomatal movement. Collectively, our results indicate that a peroxisomal BZUl/ACNl-mediated acetate--malate shunt regulates drought resistance by controlling the turgor pressure of guard cells in Arabidopsis.展开更多
ATP citrate lyase(ACLY)synthesizes cytosolic acetyl coenzyme A(acetyl-CoA),an essential biosynthetic precursor for lipid synthesis and the acetyl donor required for protein acetylation.The aberrant expression and acti...ATP citrate lyase(ACLY)synthesizes cytosolic acetyl coenzyme A(acetyl-CoA),an essential biosynthetic precursor for lipid synthesis and the acetyl donor required for protein acetylation.The aberrant expression and activity of ACLY has been documented in multiple human cancers.ETC-1002 is an indirect ACLY inhibitor,and it has recently been approved by the FDA as an additional therapeutic option in high-risk hypercholesterolemia patients unable to meet goals with standard therapy.In this work,we identified a series of novel long-chain alkenyl diacids as potent direct ACLY inhibitors,and comprehensive structure-activity relationship analysis showed that compound 18f was the most potent ACLY inhibitor with an IC50 value of 1.5μmol/L.Subsequent ester formation of 18f gave a new series of compounds such as 25f that maintained ACLY inhibitory activity and improved antitumor cell proliferation effects.展开更多
Bacteria of the Streptomyces genus are well-known producers of secondary metabolites of high medical value.They contributed nearly 60%of current antibiotics(i.e.,vancomycin,daptomycin and tetracycline),as well as anti...Bacteria of the Streptomyces genus are well-known producers of secondary metabolites of high medical value.They contributed nearly 60%of current antibiotics(i.e.,vancomycin,daptomycin and tetracycline),as well as antifungals,antiparasitics(avermectins),anticancer drugs(doxorubicin),immunosuppressants and others[1].Therefore,in the past several decades,Streptomyces bacteria or the therein involved biosynthetic pathways have long been the central topic of strain improvement,metabolic engineering,and bioengineering.Much of this research has focused on regulatory elements;however,it has been a challenge due to the complex regulatory network that controls Streptomyces secondary metabolism and its complex fungus-like morphological differentiation[2].On agar plates,production of secondary metabolites coincides with the switch from vegetative growth(substrate mycelium)to aerial mycelium hyphae and subsequent spore formation,whereas in a liquid culture,early stationary phase when cells stop growing marks the initiation of secondary metabolism.展开更多
基金supported by the National Natural Science Foundation of China(31970472,32272547)the National Science Fund of Henan Province for Distinguished Young Scholars,China(202300410191)+3 种基金the Basic Research Project of the Key Scientific Research Projects of Universities in Henan Province,China(21zx013)the Henan Agricultural Research System,China(HARS-2209-G3)the Henan Special Support for High-Level Talents Central Plains Science and Technology Innovation Leading Talents,China(224200510018)the earmarked fund for China Agricultural Research System(CARS-27)。
文摘Conogethes punctiferalis is a crop and fruit pest that has caused serious economic losses to agricultural production.This pest relies heavily on its sex pheromone to ensure sexual encounters and subsequent mating success.However,the molecular mechanism underlying sex pheromone biosynthesis in this species remains elusive.The present study investigated the detailed mechanism underlying PBAN-regulated sex pheromone biosynthesis in C.punctiferalis by transcriptome sequencing of the C.punctiferalis pheromone glands(PGs)and subsequent functional identification of the target genes.The results showed that female mating started from the first scotophase,and peaked at the second to fifth scotophases in accordance with the release of sex pheromones.PBAN regulated sex pheromone biosynthesis by employing Ca^(2+)and cAMP as secondary messengers,as demonstrated by RNA interference(RNAi),pharmacological inhibitors,and behavioral assays.Further investigation revealed that calcineurin(CaN)and acetyl-CoA carboxylase(ACC)were activated by PBAN/Ca^(2+)signaling,and the RNAimediated knockdown of CaN and ACC transcripts significantly reduced sex pheromone production,ultimately leading to a significantly reduced ability of females to attract males.Importantly,hexokinase(HK)was found to regulate sex pheromone biosynthesis in response to the PBAN/cAMP/PKA signaling pathway,as demonstrated by RNAi,enzyme activity,and pharmacological inhibitor assays.Furthermore,Far2 and Desaturase1 were found to participate in PBAN-regulated sex pheromone biosynthesis.Altogether,our findings revealed that PBAN regulates sex pheromone biosynthesis through the PBANR/Ca^(2+)/CaN/ACC and PBANR/cAMP/PKA/HK pathways in C.punctiferalis,which enriches our comprehension of the details of sex pheromone biosynthesis in moths.
文摘De novo lipogenesis(DNL)plays an important role in the pathogenesis of hepatic steatosis and also appears to be implicated in hepatic inflammation and fibrosis.Accordingly,the inhibition of acetyl-CoA carboxylase,which catalyzes the ratelimiting step of DNL,might represent a useful approach in the management of patients with nonalcoholic fatty liver disease(NAFLD).Animal studies and preliminary data in patients with NAFLD consistently showed an improvement in steatosis with the use of these agents.However,effects on fibrosis were variable and an increase in plasma triglyceride levels was observed.Therefore,more longterm studies are needed to clarify the role of these agents in NAFLD and to determine their risk/benefit profile.
基金Supported by Malaysia Ministry of Education Long-Term Research Grant Scheme(LRGS)No.203/PSK/6722002
文摘Objective:To characterize the Entamoeba histolytica(E.histolytica)antigen(s)recognized by moribound amoebic liver abscess hamsters.Methods:Crude soluble antigen of E.histolytica was probed with sera of moribund hamsters in 1D-and 2D-Westem blot analyses.The antigenic protein was then sent for tandem mass spectrometry analysis.The corresponding gene was cloned and expressed in Escherichia coli BL21-AI to produce the recombinant E.histolytica ADP-forming acetyl-CoA synthetase(EhACS)protein.A customised ELISA was developed to evaluate the sensitivity and specificity of the recombinant protein.Results:A^75 kDa protein band with a pl value of 5.91-6.5 was found to be antigenic;and not detected by sera of hamsters in the control group.Tandem mass spectrometry analysis revealed the protein to be the 77 kDa E.histolytica ADP-forming acetyl-CoA synthetase(EhACS).The customised ELISA results revealed 100%sensitivity and 100%specificity when tested against infected(n=31)and control group hamsters(n=5)serum samples,respectively.Conclusions:This rinding suggested the significant role of EhACS as a biomarker for moribund hamsters with acute amoebic liver abscess(ALA)infection.It is deemed pertinent that future studies explore the potential roles of EhACS in better understanding the pathogenesis of ALA;and in the development of vaccine and diagnostic tests to control ALA in human populations.
基金Supported by the National Natural Science Foundation of China(Nos. 20432010, 20672045 and 30570405)
文摘The entire gene of carboxyltransferase(CT) domain of acetyl-CoA carboxylase(ACCase) from Chinese Spring wheat(CSW) plastid was cloned firstly, and the 2.3 kb gene was inserted into PET28a^+ vector and expressed in E. coil in a soluble state. The (His)6 fusion protein was identified by SDS-PAGE and Western blot. The recombinant protein was purified by affinity chromatography, and the calculated molecular mass(Mr) was 88000. The results of the sequence analysis indicate that the cloned gene(GeneBank accession No. EU124675) was a supplement and revision of the reported ACCase CT partial cDNA from Chinese Spring wheat plastid. The recombinant protein will be significant for us to investigate the recognizing mechanism between ACCase and herbicides, and further to screen new herbicides.
文摘This study was conducted using seeds in Petri dish containing agar medium in order to determine acetyl-CoA carboxylase (ACCase) herbicides resistance (R) in Avena sterilis that was grown in wheat fields at Adana province, Turkey. Seeds were collected from one large suspected field, where clodinafop-propargyl (Aryloxyphenoxypropionate “FOPs”) and pinoxaden (Phenylpyrazoline “DEN”) have been applied for many years. Susceptible (S) population was collected from the road side on the same region. Agar media of concentration 14 g/L was prepared and it was melted in microwave. Then the amount of 20 mL agar media was added into each Petri dish. Five seeds were placed on agar mediums containing discriminating dose of clodinafop and pinoxaden. Petri dishes were placed in growth incubator operating at 10 °C. After 15 d, both radicle and hypocotyl length were measured. The percentage of germinated seed and dose-response curves were determined. At these different concentration levels, there were more than 50% of R and less than 40% of S seed germinated for pinoxaden. However, for clodinafop, more than 60% of R and less than 50% of S seeds were germinated. At higher concentration levels, the populations of resistant and susceptible were not germinated for both herbicides. The resistance value of R population was then compared with that of the S biotype. From the resistance index (RI), the population was more resistant to pinoxaden (7.43 for radicle and 2.47 for hypocotyl) than the clodinafop-propagyl (1.39 for radicle and 3.77 for hypocotyl). The method provided a simple, quick and cost effective way to identify ACCase herbicides resistance in most grass weeds.
基金Supported by the Financial Support of the Overseas Training Program for Outstanding Young and Middle-Aged Teachers in Universities in Jiangsu Province,China(to Yang FC).
文摘Dietary macronutrients and micronutrients play important roles in human health.On the other hand,the excessive energy derived from food is stored in the form of triacylglycerol.A variety of dietary and hormonal factors affect this process through the regulation of the activities and expression levels of those key player enzymes involved in fatty acid biosynthesis such as acetyl-CoA carboxylase,fatty acid synthase,fatty acid elongases,and desaturases.As a micronutrient,vitamin A is essential for the health of humans.Recently,vitamin A has been shown to play a role in the regulation of glucose and lipid metabolism.This review summarizes recent research progresses about the roles of vitamin A in fatty acid synthesis.It focuses on the effects of vitamin A on the activities and expression levels of mRNA and proteins of key enzymes for fatty acid synthesis in vitro and in vivo.It appears that vitamin A status and its signaling pathway regulate the expression levels of enzymes involved in fatty acid synthesis.Future research directions are also discussed.
基金funding from the EU Horizon 2020 research and innovation program(MIAMi project-Grant agreement N°814645)ARD-CVL Biopharmaceutical program of the Region Centre Val de Loire(ETOPOCentre project),Le Studium Institute(Consortium Fellowship)and ANR(project MIACYC-ANR-20-CE43-0010).
文摘Synthetic biology is constantly making progress for producing compounds on demand.Recently,Yocum and collaborators have developed an outstanding approach based on the anchoring of biosynthetic enzymes to the peroxisomal membrane.This allowed access to an untapped resource of acetyl-CoA and stimulated the synthesis of a valuable polyketide.
文摘Acetyl triacylglycerol (acetyl-TAG) containing acetyl at sn-3 position is rare in nature. It is optically active asymmetric TAG with low viscosity, having improved cold temperature property and low calorific content compared to regular TAGs. It gains increasingly attentions due to its potential applications. Metabolic engineering of plant or microorganism for production of acetyl-TAG is currently attractive. Here we summarize the researches on acetyl-TAG, with emphasis on gene discovery, protein analysis and its potential applications. Comprehensive understanding of current development in acetyl-TAG biosynthesis pathway may contribute to the increase of production and more applications.
基金funded by the National Natural Science Foundation of China(32200384)the China Postdoctoral Science Foundation(2022M710053).
文摘Lipid and sugar homeostasis is critical for insect development and survival.In this study,we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica(BgACC)that is involved in both lipogenesis and sugar homeostasis.We found that BgACC was dominantly expressed in the fat body and integument,and was significantly upregulated after molting.Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage,but it caused a lethal phenotype during adult emergence.BgACC-RNA interference(RNAi)significantly downregulated total free fatty acid(FFA)and triacylglycerol(TAG)levels,and also caused a significant decrease of cuticular hydrocarbons(CHCs).Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females,but BgACC-RNAi did not affect the reproductive ability of males.Interestingly,knockdown of BgACC also changed the expression of insulin-like peptide genes(BglLPs),which mimicked a physiological state of high sugar uptake.In addition,BgACC was upregulated when B.germanica were fed on a high sucrose diet,and repression of BgACC upregulated the expression of the glycogen synthase gene(BgGlyS).Moreover,BgACC-RNAi increased the circulating sugar levels and glycogen storage,and a longevity assay suggested that BgACC was important for the survival of B.germanica under conditions of high sucrose uptake.Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes,which further modulates insect reproduction and sugar tolerance.This study benefits our understanding of the crosstalk between lipid and sugar metabolism.
基金This research was supported by Tsinghua University Initiative Scientific Research Program (to M.P.) and funds from Tsinghua-Peking Center for Life Sciences and Institute forImmunology at Tsinghua University (to M.P.).
文摘The symbiotic relationship between the host and microbiota is widely acknowledged as mutually beneficial.However,due to significant differences in metabolic substrates and products between prokaryotic bacteria and mammalian cells,mechanisms must exist to reconcile the metabolic incompatibility between the host and microbiota.We report that host enzymes are required to detoxify gut microbiota-derived acetate to maintain male fertility in mice.The combined deletion of acetyl-CoA synthetase short-chain family member 1 and 2(ACSS1 and ACSS2),two enzymes consuming acetate in mammals,leads to excessive accumulation of acetate in circulation.This accumulation causes metabolic acidosis,blocking spermatogenesis and rendering male mice infertile.ACSS1/2-deficient germ cells exhibit comprehensive metabolic alterations with nicotinamide adenine dinucleotide(NAD+)deficiency that impairs betaine production.Supplementation with betaine restores spermatogenesis and fertility in ACSS1/2-deficient mice.Thus,the inevitable production of acetate by gut bacteria and its reproductive toxicity to the host represents an unappreciated metabolic incompatibility between the host and microbiota,which is reconciled by ACSS1/2.
基金Supported by the National Natural Science Foundation of China (Grant No. 20771029)Shanghai Pujiang Talent Project (Grant No. 08PJ14017)Shanghai Leading Academic Discipline Project (Grant No. B108)
文摘This paper focuses on the group of metalloproteins/metalloenzymes in the acetyl-coenzyme A synthesis pathway of anaerobic microbes called Wood-Ljungdahl pathway,including formate dehydrogenase (FDH),corrinoid iron sulfur protein (CoFeSP),acetyl-CoA synthase (ACS) and CO dehydrogenase (CODH). FDH,a key metalloenzyme involved in the conversion of carbon dioxide to methyltetrahydrofolate,catalyzes the reversible oxidation of formate to carbon dioxide. CoFeSP,as a methyl group transformer,accepts the methyl group from CH3-H4 folate and then transfers it to ACS. CODH reversibly catalyzes the reduction of CO2 to CO and ACS functions for acetyl-coenzyme A synthesis through condensation of the methyl group,CO and coenzyme A,to finish the whole pathway. This paper introduces the structure,function and reaction mechanisms of these enzymes.
基金supported by the National Key Research and Development Program of China(grant Nos.2018YFA0901900 and 2020YFA0908003)the Drug Innovation Major Project(grant No.2018ZX09711001-006-001,China)+2 种基金the National Natural Science Foundation of China(grant No.81573325)the CAMS Innovation Fund for Medical Sciences(CIFMS,(grant No.2017-I2M-2-004,2019-I2M-1-005,China)PUMC Disciplinary Development of Synthetic Biology(201920100801,China)。
文摘10-DeacetylbaccatinⅢ(10-DAB)C10 acetylation is an indispensable procedure for Taxol semi-synthesis,which often requires harsh conditions.10-DeacetylbaccatinⅢ-10-β-O-acetyltransferase(DBAT)catalyzes the acetylation but acetyl-CoA supply remains a key limiting factor.Here we refactored the innate biosynthetic pathway of acetyl-CoA in Escherichia coli and obtained a chassis with acetyl-CoA productivity over three times higher than that of the host cell.Then,we constructed a microbial cell factory by introducing DBAT gene into this chassis for efficiently converting 10-DAB into baccatinⅢ.We found that baccatinⅢcould be efficiently deacetylated into 10-DAB by DBAT with CoASH and K+under alkaline condition.Thus,we fed acetic acid to the engineered strain both for serving as a substrate of acetyl-CoA biosynthesis and for alleviating the deacetylation of baccatinⅢ.The fermentation conditions were optimized and the baccatinⅢtiters reached 2,3 and 4.6 g/L,respectively,in a 3-L bioreactor culture when 2,3 and 6 g/L of 10-DAB were supplied.Our study provides an environmentfriendly approach for the large scale 10-DAB acetylation without addition of acetyl-CoA in the industrial Taxol semi-synthesis.The finding of DBAT deacetylase activity may broaden its application in the structural modification of pharmaceutically important lead compounds.
基金M.P.is supported by National Natural Science Foundation of China(31741085)Tsinghua University Initiative Scientific Research Program(2021Z)+2 种基金Vanke Special Fund for Public Health and Health Discipline Development,Tsinghua University(2022Z82WKJ013)Tsinghua-Peking Center for Life Sciences and Institute for Immunology at Tsinghua University.M.O.L.is supported by NIH(R01 AI 102888)a Howard Hughes Medical Institute Faculty Scholar Award and by Memorial Sloan Kettering Cancer Center Support Grant(Core Grant P30 CA08748).
文摘T cells are one of few cell types in adult mammals that can proliferate extensively and differentiate diversely upon stimulation,which serves as an excellent example to dissect the metabolic basis of cell fate decisions.During the last decade,there has been an explosion of research into the metabolic control of T-cell responses.The roles of common metabolic pathways,including glycolysis,lipid metabolism,and mitochondrial oxidative phosphorylation,in T-cell responses have been well characterized,and their mechanisms of action are starting to emerge.In this review,we present several considerations for T-cell metabolism-focused research,while providing an overview of the metabolic control of T-cell fate decisions during their life journey.We try to synthesize principles that explain the causal relationship between cellular metabolism and T-cell fate decision.We also discuss key unresolved questions and challenges in targeting T-cell metabolism to treat disease.
基金supported by the State Key R&D Project of China(Grant No.2016YFA0601102)the National Natural Science Foundation of China(Grant Nos.91751205,41525011&41867057)。
文摘Bathyarchaeota is believed to play a crucial role in the global carbon cycle due to its vast biomass,broad distribution,and diverse habitat.However,its physiological and metabolic features are hard to determine without pure culture.While metagenomic analyses have shown that Bathyarchaeota has a complete inorganic carbon fixation(Wood-Ljungdahl,WL)pathway,no direct functional confirmation has been reported.To explore the inorganic carbon fixation ability of Bathyarchaeota,we used lignin and sodium bicarbonate-^(13)C(NaH^(13)CO_(3))in the long-term incubation of marine sediment samples.We found that Bathyarchaeota grew continuously in the cultivation system with lignin,and its abundance increased up to 15.3 times after10 months,increasing its fraction of all archaea from 30%to 80%.We monitored theδ^(13)C of total organic carbon to identify microbial carbon fixation in the cultivation systems,finding that it increased in the first month while NaH^(13)CO_(3)was present but only increased continuously afterward when lignin was also present.Furthermore,ultracentrifugation was performed on DNA extracted from samples at different cultivation stages to separate DNA of different buoyant densities,and bathyarchaeotal and bacterial 16S ribosomal RNA(r RNA)gene abundance were quantified using qPCR.Compared to bacteria,bathyarchaeotal 16S rRNA tended to be concentrated in heavy layers after 4 months of incubation with lignin and NaH^(13)CO_(3),indicating that Bathyarchaeota DNA contained^(13)C through proliferation based on lignin utilization and NaH^(13)CO_(3)assimilation,proving the carbon fixation capacity of Bathyarchaeota.
基金supported by National Key R&D Program of China(No.2019YFE0111800)National Natural Science Foundation of China(Nos.T2192972,81872923,and 81903904)the CAMS Innovation Fund(2022-I2M-1-014,China).
文摘Glioblastoma(GBM)is a highly aggressive and lethal brain tumor with an immunosuppressive tumor microenvironment(TME).In this environment,myeloid cells,such as myeloid-derived suppressor cells(MDSCs),play a pivotal role in suppressing antitumor immunity.Lipometabolism is closely related to the function of myeloid cells.Here,our study reports that acetyl-CoA acetyltransferase 1(ACAT1),the key enzyme of fatty acid oxidation(FAO)and ketogenesis,is significantly downregulated in the MDSCs infiltrated in GBM patients.To investigate the effects of ACAT1 on myeloid cells,we generated mice with myeloid-specific(LyzM-cre)depletion of ACAT1.The results show that these mice exhibited a remarkable accumulation of MDSCs and increased tumor progression both ectopically and orthotopically.The mechanism behind this effect is elevated secretion of C-X-C motif ligand 1(CXCLI)of macrophages(Mo).Overall,our findings demonstrate that ACAT1 could serve as a promising drug target for GBM by regulating the function of MDSCs in the TME.
基金supported by the National Natural Science Foundation of China(No.81773830)Beijing Natural Science Foundation Program+3 种基金Scientific Research Key Program of Beijing Municipal Commission of Education(No.KZ201710025022)the Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five–year Plan(No.CIT&TCD20170324)National Program for Special Support of Eminent ProfessionalsKey project at central government level:The ability establishment of sustainable use for valuable Chinese medicine resources(No.2060302)
文摘3-Hydroxy-3-methylglutaryl-CoA synthase(HMGS) is the first committed enzyme in the MVA pathway and involved in the biosynthesis of terpenes in Tripterygium wilfordii. The full-length cDNA and a 515 bp RNAi target fragment of TwHMGS were ligated into the p H7 WG2 D and p K7 GWIWG2 D vectors to respectively overexpress and silence, Tw HMGS was overexpressed and silenced in T. wilfordii suspension cells using biolistic-gun mediated transformation, which resulted in 2-fold increase and a drop to70% in the expression level compared to cells with empty vector controls. During Tw HMGS overexpression, the expression of TwHMGR, TwDXR and TwTPS7 v2 was significantly upregulated to the control. In the RNAi group, the expression of Tw HMGR,TwDXS, TwDXR and TwMCT visibly displayed downregulation to the control. The cells with TwHMGS overexpressed produced twice higher than the control value. These results proved that differential expression of Tw HMGS determined the production of triptolide in T.wilfordii and laterally caused different trends of relative gene expression in the terpene biosynthetic pathway. Finally, the substrate acetyl-Co A was docked into the active site of TwHMGS, suggesting the key residues including His247, Lys256 and Arg296 undergo electrostatic or H-bond interactions with acetyl-CoA.
基金This work was supported by the National Natural Science Foundation of China (31430061) and the Ministry of Agriculture of China (2016ZX08009-003).
文摘In plants, stomatal movements are tightly controlled by changes in cellular turgor pressure. Carbohydrates produced by glycolysis and the tricarboxylic acid cycle play an important role in regulating turgor pressure. Here, we describe anArabidopsis mutant, bzul, isolated in a screen for elevated leaf temperature in response to drought stress, which displays smaller stomatal pores and higher drought resistance than wild-type plants. BZU1 encodes a known acetyl-coenzyme A synthetase, ACN1, which acts in the first step of a metabolic pathway converting acetate to malate in peroxisomes. We showed that BZUl/ACNl-mediated acetate-to-malate conversion provides a shunt that plays an important role in osmoregulation of stomatal turgor. We found that the smaller stomatal pores in the bzul mutant are a consequence of reduced accumu- lation of malate, which acts as an osmoticum and/or a signaling molecule in the control of turgor pressure within guard cells, and these results provided new genetic evidence for malate-regulated stomatal movement. Collectively, our results indicate that a peroxisomal BZUl/ACNl-mediated acetate--malate shunt regulates drought resistance by controlling the turgor pressure of guard cells in Arabidopsis.
基金supported by grants fromthe"Personalized Medicines-Molecular Signature-based Drug Discovery and Development"Strategic Priority Research Program of the Chinese Academy of Sciences(XDA12040328)the Medical Guidance Project of Shanghai ScienceandTechnology Commission(20S11903400)+1 种基金the Natural Science Foundation of Shanghai's 2021"Science and Technology InnovationAction Plan"(21ZR1475300)the National Natural Science Foundation of China(No.82170872).
文摘ATP citrate lyase(ACLY)synthesizes cytosolic acetyl coenzyme A(acetyl-CoA),an essential biosynthetic precursor for lipid synthesis and the acetyl donor required for protein acetylation.The aberrant expression and activity of ACLY has been documented in multiple human cancers.ETC-1002 is an indirect ACLY inhibitor,and it has recently been approved by the FDA as an additional therapeutic option in high-risk hypercholesterolemia patients unable to meet goals with standard therapy.In this work,we identified a series of novel long-chain alkenyl diacids as potent direct ACLY inhibitors,and comprehensive structure-activity relationship analysis showed that compound 18f was the most potent ACLY inhibitor with an IC50 value of 1.5μmol/L.Subsequent ester formation of 18f gave a new series of compounds such as 25f that maintained ACLY inhibitory activity and improved antitumor cell proliferation effects.
基金This article was supported in part by the Faculty Excellence support from the Harbor Branch Oceanographic Foundation.
文摘Bacteria of the Streptomyces genus are well-known producers of secondary metabolites of high medical value.They contributed nearly 60%of current antibiotics(i.e.,vancomycin,daptomycin and tetracycline),as well as antifungals,antiparasitics(avermectins),anticancer drugs(doxorubicin),immunosuppressants and others[1].Therefore,in the past several decades,Streptomyces bacteria or the therein involved biosynthetic pathways have long been the central topic of strain improvement,metabolic engineering,and bioengineering.Much of this research has focused on regulatory elements;however,it has been a challenge due to the complex regulatory network that controls Streptomyces secondary metabolism and its complex fungus-like morphological differentiation[2].On agar plates,production of secondary metabolites coincides with the switch from vegetative growth(substrate mycelium)to aerial mycelium hyphae and subsequent spore formation,whereas in a liquid culture,early stationary phase when cells stop growing marks the initiation of secondary metabolism.