Background: Preeclampsia is reported to complicate 2% - 8% of pregnancies globally and is an important cause of maternal and perinatal morbidity and mortality. The aetiology and pathogenesis are still poorly understoo...Background: Preeclampsia is reported to complicate 2% - 8% of pregnancies globally and is an important cause of maternal and perinatal morbidity and mortality. The aetiology and pathogenesis are still poorly understood and substantial improvement has not been made in the prediction, prevention and treatment of the disease. Objective: To compare the frequency of activated protein C resistance (APC-R) in patients with pre-eclampsia to that of normotensive pregnant women and to determine the correlation between activated protein ratio (APC-ratio) and the severity of pre-eclampsia. Methodology: A cross-sectional study was carried out in 100 pre-eclamptic patients and 100 normotensive pregnant controls. The APC-ratio was determined using the modified activated partial thromboplastin time. Study participants with APC-ratio of less than 2.0 were defined as having APC-R. Data was analyzed using SPSS version 22.0. Results: Mean APC-ratio was significantly lower in pre-eclamptics (2.89 ± 1.70) compared to normotensive pregnant women (3.57 ± 1.06) (p = 0.0008) and the levels were also higher in mild (2.95 ± 1.15) compared to severe pre-eclamptics (2.62 ± 1.14). The frequency of APC-R was 26% among women with pre-eclampsia compared to 4% among normotensive controls (p = 0.000). Among 100 pre-eclamptic women 7 (21.2%) out of 33 with mild pre–eclampsia had APC-R, while 19 (28.4%) out of 67 with severe pre-eclampsia had APC-R. APC-ratio had a significant negative correlation with mean arterial blood pressure (r = −0.324;p = 0.000) and proteinuria (r = −0.379;p = 0.000) among study participants. Conclusion: The frequency of activated protein c resistance is significantly higher in pre-eclamptics compared to normotensive pregnant women and this is more pronounced in those with severe pre-eclampsia compared with those with mild disease. APC-R may therefore be used as a marker of severity in the disease.展开更多
Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce d...Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce dehydration and/or aromatization to change the structure of cellulose/hemicellulose.This might interfere with evolution of structures of AC,which was investigated herein via thermal pretreatment of willow branch(WB)from 200 to 360℃and the subsequent activation with ZnCl_(2) at 550℃.The results showed that thermal pretreatment at 360℃(WB-360)could lead to substantial pyrolysis to form biochar,with a yield of 31.9%,accompanying with nearly complete destruction of cellulose crystals and remarkably enhanced aromatic degree.However,cellulose residual in WB-360 could still be activated to form AC-360 with specific surface area of 1837.9 m~2·g^(-1),which was lower than that in AC from activation of untreated WB(AC-blank,2077.8 m~2·g^(-1)).Nonetheless,the AC-200 from activation of WB-200 had more developed pores(2113.9 m~2·g^(-1))and superior capability for adsorption of phenol,due to increased permeability of ZnCl_(2) to the largely intact cellulose structure in WB-200.The thermal pretreatment did increase diameters of micropores of AC but reduced the overall yield of AC(26.8%for AC-blank versus 18.0%for AC-360),resulting from accelerated cracking but reduced intensity of condensation.In-situ infrared characterization of the activation showed that ZnCl_(2) mainly catalyzed dehydration,dehydrogenation,condensation,and aromatization but not cracking,suppressing the formation of derivatives of cellulose and lignin in bio-oil.The thermal pretreatment formed phenolic-OH and C=O with higher chemical innerness,which changed the reaction network in activation,shifting morphology of fibrous structures in AC-blank to“melting surface”in AC-200 or AC-280.展开更多
The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were expl...The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs ...Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs possessed an ultra-high specific surface(2178.90 m^(2)·g^(-1))and plenty of micro-and meso-pores,as well as a high pore volume(1.01 cm^(3)·g^(-1)).Ascribed to ultra-high surface area,π-π interaction,electrostatic interaction,as well as hydrogen-bonding interactions,the CBACs displayed huge superiority in efficient dye removal.The saturated methylene blue adsorption capacity by CBACs could be as high as 1143.4 mg·g^(-1),superior to that of other reported biomass-activated carbons.The adsorption was endothermic and modeled well by the pseudo-second-order kinetic,intra-particle diffusion,and Langmuir models.This work presented the effectiveness of Taihu cyanobacteria adsorbent ascribed to its super large specific surface area and high adsorption ability.展开更多
Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In...Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane.展开更多
Lithium-sulfur batteries are emerging as sustainable replacements for current lithium-ion batteries.The commercial viability of this novel type of battery is still under debate due to the extensive use of highly react...Lithium-sulfur batteries are emerging as sustainable replacements for current lithium-ion batteries.The commercial viability of this novel type of battery is still under debate due to the extensive use of highly reactive lithium-metal anodes and the complex electrochemistry of the sulfur cathode.In this research,a novel sulfur-based battery has been proposed that eliminates the need for metallic lithium anodes and other critical raw materials like cobalt and graphite,replacing them with biomass-derived materials.This approach presents numerous benefits,encompassing ample availability,cost-effectiveness,safety,and environmental friendliness.In particular,two types of biochar-based anode electrodes(non-activated and activated biochar)derived from spent common ivy have been investigated as alternatives to metallic lithium.We compared their structural and electrochemical properties,both of which exhibited good compatibility with the typical electrolytes used in sulfur batteries.Surprisingly,while steam activation results in an increased specific surface area,the non-activated ivy biochar demonstrates better performance than the activated biochar,achieving a stable capacity of 400 mA h g^(−1)at 0.1 A g^(−1)and a long lifespan(>400 cycles at 0.5 A g^(−1)).Our results demonstrate that the presence of heteroatoms,such as oxygen and nitrogen positively affects the capacity and cycling performance of the electrodes.This led to increased d-spacing in the graphitic layer,a strong interaction with the solid electrolyte interphase layer,and improved ion transportation.Finally,the non-activated biochar was successfully coupled with a sulfur cathode to fabricate lithium-metal-free sulfur batteries,delivering a specific energy density of~600 Wh kg^(−1).展开更多
Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous ...Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO_(2) accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO_(4) concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO_(4) were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO_(4) and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation.展开更多
In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.M...In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.Mala-chite green dye waste is a toxic and non-biodegradable material that damages the environment.Optimization of adsorption processes was carried out using Response Surface Methodology(RSM)with a Box-Behnken Design(BBD).The synthesized activated carbon was characterized using FTIR and SEM instruments.The FTIR spectra confirmed the presence of a sulfonate group(-SO_(3)H)in the activated carbon,indicating that the activation pro-cess using sulfuric acid was successful.SEM characterization shows that activated carbon has porous morphology.Optimization was carried out for three adsorption parameters,namely contact time(20,60,and 120 min),adsor-bent mass(0.005,0.025,and 0.05 g),and initial concentration of malachite green solution(5,50,and 100 mg·L^(-1)).The concentration of the malachite green solution was determined using a UV-Vis spectrophotometer at the max-imum wavelength of malachite green,618 nm.The optimum of malachite green adsorption using mangosteen peel activated carbon was obtained at a contact time of 80 min,an adsorbent mass of 0.032 g,and malachite green initial concentration of 25 mg·L^(-1),with a maximum removal percentage and maximum adsorption capacity of 93.66%and 19.345 mg·g^(-1),respectively.展开更多
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a...This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM.展开更多
In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge pr...In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.展开更多
The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using...The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.展开更多
BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its d...BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its damage is an important indicator of DR.Receptor for activated C kinase 1(RACK1)activates protein kinase C-ε(PKC-ε)to promote the generation of reactive oxygen species(ROS)in RPE cells,leading to apoptosis.Therefore,we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS,thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR.AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR.METHODS In this study,Sprague-Dawley rats and adult RPE cell line-19(ARPE-19)cells were used as in vivo and in vitro models,respectively,to explore the role of RACK1 in mediating PKC-εin early DR.Furthermore,the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model.RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and upregulated expression of RACK1 and PKC-εproteins in RPE cells following a prolonged modeling.Similarly,ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε,accompanied by an increases in ROS production,apoptosis rate,and monolayer permeability.However,silencing RACK1 significantly downregulated the expression of PKC-εand ROS,reduced cell apoptosis and permeability,and protected barrier function.CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.展开更多
Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw mat...Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.展开更多
Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepare...Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions.展开更多
The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activat...The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activated carbon made from coconut shells. The activated carbons were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy-energy dispersive x-ray (SEM-EDX). The adsorption column dynamics were studied by varying the flow rates (5, 10 and 15 mL/min), bed heights (10, 15 and 20 cm), and initial concentrations (50, 150, and 250 mg/L). The activated carbon has a pore volume of 0.715 cm3/g and a BET-specific surface area of 1410 m2/g. Sodium dodecyl sulfate (SDS) surfactant incorporation onto the surface of the activated carbon enhances its capacity for simultaneous adsorption of Pb2+, Cu2+, Zn2+, and Cd2+ from the aqueous medium. The affinity of the heavy metals to both unmodified (AC) and modified (AC-SDS) activated carbons followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The dynamic adsorption of the column depends on the flow rate, bed height, initial metal concentration, and SDS surface modification. With a 5 mL/min flow rate, a 20 cm bed height, and a 50 mg/L initial metal concentration, a maximum break-through time of 150 minutes for the unmodified activated carbon (AC) and 180 minutes for the SDS-modified activated carbon (AC-SDS) was reached.展开更多
The baobab, Adansonia digitata L., plays an important role in the economy of local populations. Nowadays, baobab seed oil is highly prized for its many cosmetic and therapeutic applications, and for its composition of...The baobab, Adansonia digitata L., plays an important role in the economy of local populations. Nowadays, baobab seed oil is highly prized for its many cosmetic and therapeutic applications, and for its composition of unsaturated fatty acids, sterols, and tocopherols. However, it undergoes numerous reactions during production, processing, transport, and storage, leading to undesirable products that make it unstable. The aim of this study was to provide local processors with innovative solutions for the treatment of unrefined vegetable oils. To this end, an experimental device for filtering crude oil on activated carbon made from fruit capsules was designed. The results obtained after the treatment show a significant decrease at (p < 5%) in acid value (1.62 to 0.58 mg KOH/g), peroxide value (4.40a to 0.50c mEqO<sub>2</sub>/Kg), chlorophyll concentration (1.81 to 0.50 mg/Kg) and primary and secondary oxidation products. According to these results, activated carbon’s adsorptive power eliminates oxidation products and certain pro-oxidants such as chlorophyll, resulting in a cleaner, more stable and better storable oil.展开更多
This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared...This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared from palm nut shells collected in the city of Franceville to Gabon, using potassium hydroxide (KOH) as the activating agent. Results on the elimination of Fe(II) in static and dynamic adsorption on prepared activated carbons (ACs) showed that the AC-i24h adsorbent has the best Fe(II) adsorption capacities at saturation (Qsat). The Qsat obtained on AC-i24h in static and dynamic conditions (17.87 and 10.38 mg/g, respectively) were higher than those of AC-i30min (13.89 and 5.54 mg/g respectively) and AC-i1h (14.92 and 8.64 mg/g respectively). Moreover, the static adsorption was more effective in the removal of Fe(II) ions in aqueous media in our experimental conditions. The percentage removal (%E) of Fe(II) obtained on prepared activated carbons in static conditions was better than those obtained in dynamic conditions, especially on AC-i24h, where the %E was 89.27% in static and 61.56% in dynamic. In kinetics, results showed that the pseudo-second-order kinetic model best described the adsorption mechanisms of Fe(II) on prepared activated carbons in static adsorption, with mainly of chemisorption on the solid surfaces. However, in dynamic conditions, the pseudo-first-order kinetic model was more suitable. In addition to the weak interactions between Fe(II) and the activated carbon surfaces, strong interactions (chemisorption) were also observed. Also, thermodynamic data obtained on AC-i24h in static adsorption indicated that the adsorption of Fe(II) was spontaneous and increased with temperature (ΔG˚ H˚ = 503.54 KJ/mol).展开更多
The purpose of this study is to compare the results of chemical analysis of two types of activated from the pyrolysis of bull horn and that of cow. Six samples were used to measure pH, carbon, calcium and to determine...The purpose of this study is to compare the results of chemical analysis of two types of activated from the pyrolysis of bull horn and that of cow. Six samples were used to measure pH, carbon, calcium and to determine adsorbent power. The pH was measured at a temperature of 20˚C using an “ANION 7010 ionomer” pH meter, the carbon (C) content was analyzed using a “EURO EA 3000” analyzer. and the electronic balance: “Sartorius CP-2P”, calcium (Ca) was analyzed using a DFS-8 spectrograph. For the adsorbency test, the 0.15% methylene blue R solution was used. At the end of this study, we found that the activated carbon from the bull horn demonstrated a carbon content that is higher than that of the cow horn (20.79% against 15.63%), activated carbon of cow horn is richer in calcium than that of bull horn (16.27% against 3.69%) and then the pH. The cow horn is higher than that of the bull horn (7.43 versus 6.5). For the adsorbent power, the sample (75% bull horn and 25% cow horn) was recorded with the greatest adsorbent power. Thus, from this study, it can be recommended as an activated carbon antidote to be used for poisonings treatment.展开更多
The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)...The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.展开更多
文摘Background: Preeclampsia is reported to complicate 2% - 8% of pregnancies globally and is an important cause of maternal and perinatal morbidity and mortality. The aetiology and pathogenesis are still poorly understood and substantial improvement has not been made in the prediction, prevention and treatment of the disease. Objective: To compare the frequency of activated protein C resistance (APC-R) in patients with pre-eclampsia to that of normotensive pregnant women and to determine the correlation between activated protein ratio (APC-ratio) and the severity of pre-eclampsia. Methodology: A cross-sectional study was carried out in 100 pre-eclamptic patients and 100 normotensive pregnant controls. The APC-ratio was determined using the modified activated partial thromboplastin time. Study participants with APC-ratio of less than 2.0 were defined as having APC-R. Data was analyzed using SPSS version 22.0. Results: Mean APC-ratio was significantly lower in pre-eclamptics (2.89 ± 1.70) compared to normotensive pregnant women (3.57 ± 1.06) (p = 0.0008) and the levels were also higher in mild (2.95 ± 1.15) compared to severe pre-eclamptics (2.62 ± 1.14). The frequency of APC-R was 26% among women with pre-eclampsia compared to 4% among normotensive controls (p = 0.000). Among 100 pre-eclamptic women 7 (21.2%) out of 33 with mild pre–eclampsia had APC-R, while 19 (28.4%) out of 67 with severe pre-eclampsia had APC-R. APC-ratio had a significant negative correlation with mean arterial blood pressure (r = −0.324;p = 0.000) and proteinuria (r = −0.379;p = 0.000) among study participants. Conclusion: The frequency of activated protein c resistance is significantly higher in pre-eclamptics compared to normotensive pregnant women and this is more pronounced in those with severe pre-eclampsia compared with those with mild disease. APC-R may therefore be used as a marker of severity in the disease.
基金supported by the National Natural Science Foundation of China(52276195)Program for Supporting Innovative Research from Jinan(202228072)Program of Agricultural Development from Shandong(SD2019NJ015)。
文摘Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce dehydration and/or aromatization to change the structure of cellulose/hemicellulose.This might interfere with evolution of structures of AC,which was investigated herein via thermal pretreatment of willow branch(WB)from 200 to 360℃and the subsequent activation with ZnCl_(2) at 550℃.The results showed that thermal pretreatment at 360℃(WB-360)could lead to substantial pyrolysis to form biochar,with a yield of 31.9%,accompanying with nearly complete destruction of cellulose crystals and remarkably enhanced aromatic degree.However,cellulose residual in WB-360 could still be activated to form AC-360 with specific surface area of 1837.9 m~2·g^(-1),which was lower than that in AC from activation of untreated WB(AC-blank,2077.8 m~2·g^(-1)).Nonetheless,the AC-200 from activation of WB-200 had more developed pores(2113.9 m~2·g^(-1))and superior capability for adsorption of phenol,due to increased permeability of ZnCl_(2) to the largely intact cellulose structure in WB-200.The thermal pretreatment did increase diameters of micropores of AC but reduced the overall yield of AC(26.8%for AC-blank versus 18.0%for AC-360),resulting from accelerated cracking but reduced intensity of condensation.In-situ infrared characterization of the activation showed that ZnCl_(2) mainly catalyzed dehydration,dehydrogenation,condensation,and aromatization but not cracking,suppressing the formation of derivatives of cellulose and lignin in bio-oil.The thermal pretreatment formed phenolic-OH and C=O with higher chemical innerness,which changed the reaction network in activation,shifting morphology of fibrous structures in AC-blank to“melting surface”in AC-200 or AC-280.
基金supported by the National Natural Science Foundation of China(No.41276067)the Air Liquide(China)R&D Co.,Ltd.(No.20200216).
文摘The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金financially supported by the Key Research&Development program of Zhejiang Province(2021C03196)the National Key Research and Development Program of China(2022YFE0128600)the Natural Science Foundation of Zhejiang Province(LY22B060011).
文摘Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs possessed an ultra-high specific surface(2178.90 m^(2)·g^(-1))and plenty of micro-and meso-pores,as well as a high pore volume(1.01 cm^(3)·g^(-1)).Ascribed to ultra-high surface area,π-π interaction,electrostatic interaction,as well as hydrogen-bonding interactions,the CBACs displayed huge superiority in efficient dye removal.The saturated methylene blue adsorption capacity by CBACs could be as high as 1143.4 mg·g^(-1),superior to that of other reported biomass-activated carbons.The adsorption was endothermic and modeled well by the pseudo-second-order kinetic,intra-particle diffusion,and Langmuir models.This work presented the effectiveness of Taihu cyanobacteria adsorbent ascribed to its super large specific surface area and high adsorption ability.
基金supported by the renewable energy and hydrogen projects in National Key Research and Development Plan of China(2019YFB1505000).
文摘Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane.
基金supported by the Special Research Fund(BOF23PD03,P.Salimi)the Research Foundation Flanders(FWO SB-1S92022N,W.Vercruysse).
文摘Lithium-sulfur batteries are emerging as sustainable replacements for current lithium-ion batteries.The commercial viability of this novel type of battery is still under debate due to the extensive use of highly reactive lithium-metal anodes and the complex electrochemistry of the sulfur cathode.In this research,a novel sulfur-based battery has been proposed that eliminates the need for metallic lithium anodes and other critical raw materials like cobalt and graphite,replacing them with biomass-derived materials.This approach presents numerous benefits,encompassing ample availability,cost-effectiveness,safety,and environmental friendliness.In particular,two types of biochar-based anode electrodes(non-activated and activated biochar)derived from spent common ivy have been investigated as alternatives to metallic lithium.We compared their structural and electrochemical properties,both of which exhibited good compatibility with the typical electrolytes used in sulfur batteries.Surprisingly,while steam activation results in an increased specific surface area,the non-activated ivy biochar demonstrates better performance than the activated biochar,achieving a stable capacity of 400 mA h g^(−1)at 0.1 A g^(−1)and a long lifespan(>400 cycles at 0.5 A g^(−1)).Our results demonstrate that the presence of heteroatoms,such as oxygen and nitrogen positively affects the capacity and cycling performance of the electrodes.This led to increased d-spacing in the graphitic layer,a strong interaction with the solid electrolyte interphase layer,and improved ion transportation.Finally,the non-activated biochar was successfully coupled with a sulfur cathode to fabricate lithium-metal-free sulfur batteries,delivering a specific energy density of~600 Wh kg^(−1).
文摘Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO_(2) accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO_(4) concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO_(4) were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO_(4) and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation.
文摘In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.Mala-chite green dye waste is a toxic and non-biodegradable material that damages the environment.Optimization of adsorption processes was carried out using Response Surface Methodology(RSM)with a Box-Behnken Design(BBD).The synthesized activated carbon was characterized using FTIR and SEM instruments.The FTIR spectra confirmed the presence of a sulfonate group(-SO_(3)H)in the activated carbon,indicating that the activation pro-cess using sulfuric acid was successful.SEM characterization shows that activated carbon has porous morphology.Optimization was carried out for three adsorption parameters,namely contact time(20,60,and 120 min),adsor-bent mass(0.005,0.025,and 0.05 g),and initial concentration of malachite green solution(5,50,and 100 mg·L^(-1)).The concentration of the malachite green solution was determined using a UV-Vis spectrophotometer at the max-imum wavelength of malachite green,618 nm.The optimum of malachite green adsorption using mangosteen peel activated carbon was obtained at a contact time of 80 min,an adsorbent mass of 0.032 g,and malachite green initial concentration of 25 mg·L^(-1),with a maximum removal percentage and maximum adsorption capacity of 93.66%and 19.345 mg·g^(-1),respectively.
基金Funded by Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education(No.JLJZHDKF202204)。
文摘This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM.
文摘In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.
文摘The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.
基金Supported by National Natural Science Foundation of China,No.82260211Key Research and Development Project in Jiangxi Province,No.20203BBG73058Chinese Medicine Science and Technology Project in Jiangxi Province,No.2020A0166.
文摘BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its damage is an important indicator of DR.Receptor for activated C kinase 1(RACK1)activates protein kinase C-ε(PKC-ε)to promote the generation of reactive oxygen species(ROS)in RPE cells,leading to apoptosis.Therefore,we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS,thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR.AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR.METHODS In this study,Sprague-Dawley rats and adult RPE cell line-19(ARPE-19)cells were used as in vivo and in vitro models,respectively,to explore the role of RACK1 in mediating PKC-εin early DR.Furthermore,the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model.RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and upregulated expression of RACK1 and PKC-εproteins in RPE cells following a prolonged modeling.Similarly,ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε,accompanied by an increases in ROS production,apoptosis rate,and monolayer permeability.However,silencing RACK1 significantly downregulated the expression of PKC-εand ROS,reduced cell apoptosis and permeability,and protected barrier function.CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key ResearchandDevelopment Project(231111230200).
文摘Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.
文摘Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions.
文摘The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activated carbon made from coconut shells. The activated carbons were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy-energy dispersive x-ray (SEM-EDX). The adsorption column dynamics were studied by varying the flow rates (5, 10 and 15 mL/min), bed heights (10, 15 and 20 cm), and initial concentrations (50, 150, and 250 mg/L). The activated carbon has a pore volume of 0.715 cm3/g and a BET-specific surface area of 1410 m2/g. Sodium dodecyl sulfate (SDS) surfactant incorporation onto the surface of the activated carbon enhances its capacity for simultaneous adsorption of Pb2+, Cu2+, Zn2+, and Cd2+ from the aqueous medium. The affinity of the heavy metals to both unmodified (AC) and modified (AC-SDS) activated carbons followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The dynamic adsorption of the column depends on the flow rate, bed height, initial metal concentration, and SDS surface modification. With a 5 mL/min flow rate, a 20 cm bed height, and a 50 mg/L initial metal concentration, a maximum break-through time of 150 minutes for the unmodified activated carbon (AC) and 180 minutes for the SDS-modified activated carbon (AC-SDS) was reached.
文摘The baobab, Adansonia digitata L., plays an important role in the economy of local populations. Nowadays, baobab seed oil is highly prized for its many cosmetic and therapeutic applications, and for its composition of unsaturated fatty acids, sterols, and tocopherols. However, it undergoes numerous reactions during production, processing, transport, and storage, leading to undesirable products that make it unstable. The aim of this study was to provide local processors with innovative solutions for the treatment of unrefined vegetable oils. To this end, an experimental device for filtering crude oil on activated carbon made from fruit capsules was designed. The results obtained after the treatment show a significant decrease at (p < 5%) in acid value (1.62 to 0.58 mg KOH/g), peroxide value (4.40a to 0.50c mEqO<sub>2</sub>/Kg), chlorophyll concentration (1.81 to 0.50 mg/Kg) and primary and secondary oxidation products. According to these results, activated carbon’s adsorptive power eliminates oxidation products and certain pro-oxidants such as chlorophyll, resulting in a cleaner, more stable and better storable oil.
文摘This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared from palm nut shells collected in the city of Franceville to Gabon, using potassium hydroxide (KOH) as the activating agent. Results on the elimination of Fe(II) in static and dynamic adsorption on prepared activated carbons (ACs) showed that the AC-i24h adsorbent has the best Fe(II) adsorption capacities at saturation (Qsat). The Qsat obtained on AC-i24h in static and dynamic conditions (17.87 and 10.38 mg/g, respectively) were higher than those of AC-i30min (13.89 and 5.54 mg/g respectively) and AC-i1h (14.92 and 8.64 mg/g respectively). Moreover, the static adsorption was more effective in the removal of Fe(II) ions in aqueous media in our experimental conditions. The percentage removal (%E) of Fe(II) obtained on prepared activated carbons in static conditions was better than those obtained in dynamic conditions, especially on AC-i24h, where the %E was 89.27% in static and 61.56% in dynamic. In kinetics, results showed that the pseudo-second-order kinetic model best described the adsorption mechanisms of Fe(II) on prepared activated carbons in static adsorption, with mainly of chemisorption on the solid surfaces. However, in dynamic conditions, the pseudo-first-order kinetic model was more suitable. In addition to the weak interactions between Fe(II) and the activated carbon surfaces, strong interactions (chemisorption) were also observed. Also, thermodynamic data obtained on AC-i24h in static adsorption indicated that the adsorption of Fe(II) was spontaneous and increased with temperature (ΔG˚ H˚ = 503.54 KJ/mol).
文摘The purpose of this study is to compare the results of chemical analysis of two types of activated from the pyrolysis of bull horn and that of cow. Six samples were used to measure pH, carbon, calcium and to determine adsorbent power. The pH was measured at a temperature of 20˚C using an “ANION 7010 ionomer” pH meter, the carbon (C) content was analyzed using a “EURO EA 3000” analyzer. and the electronic balance: “Sartorius CP-2P”, calcium (Ca) was analyzed using a DFS-8 spectrograph. For the adsorbency test, the 0.15% methylene blue R solution was used. At the end of this study, we found that the activated carbon from the bull horn demonstrated a carbon content that is higher than that of the cow horn (20.79% against 15.63%), activated carbon of cow horn is richer in calcium than that of bull horn (16.27% against 3.69%) and then the pH. The cow horn is higher than that of the bull horn (7.43 versus 6.5). For the adsorbent power, the sample (75% bull horn and 25% cow horn) was recorded with the greatest adsorbent power. Thus, from this study, it can be recommended as an activated carbon antidote to be used for poisonings treatment.
基金the funding support from the National Natural Science Foundation of China(21906072,22006057)the Natural Science Foundation of Jiangsu Province(BK20190982)“Doctor of Mass entrepreneurship and innovation”Project in Jiangsu Province。
文摘The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.