Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-...Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-aided therapy, has been widely used in the treatment of uterine fibroids. However, such segmentation in HIFU remains challenge for two reasons: (1) the blurry or missing boundaries of lesion regions in the HIFU images and (2) the deformation of uterine fibroids caused by the patient's breathing or an external force during the US imaging process, which can lead to complex shapes of lesion regions. These factors have prevented classical active contour-based segmentation methods from yielding desired results for uterine fibroids in US images. In this paper, a novel active contour-based segmentation method is proposed, which utilizes the correlation information of target shapes among a sequence of images as prior knowledge to aid the existing active contour method. This prior knowledge can be interpreted as a unsupervised clustering of shapes prior modeling. Meanwhile, it is also proved that the shapes correlation has the low-rank property in a linear space, and the theory of matrix recovery is used as an effective tool to impose the proposed prior on an existing active contour model. Finally, an accurate method is developed to solve the proposed model by using the Augmented Lagrange Multiplier (ALM). Experimental results from both synthetic and clinical uterine fibroids US image sequences demonstrate that the proposed method can consistently improve the performance of active contour models and increase the robustness against missing or misleading boundaries, and can greatly improve the efficiency of HIFU therapy.展开更多
In this paper, we present an efficient approach for unsupervised segmentation of natural and textural images based on the extraction of image features and a fast active contour segmentation model. We address the probl...In this paper, we present an efficient approach for unsupervised segmentation of natural and textural images based on the extraction of image features and a fast active contour segmentation model. We address the problem of textures where neither the gray-level information nor the boundary information is adequate for object extraction. This is often the case of natural images composed of both homogeneous and textured regions. Because these images cannot be in general directly processed by the gray-level information, we propose a new texture descriptor which intrinsically defines the geometry of textures using semi-local image information and tools from differential geometry. Then, we use the popular Kullback-Leibler distance to design an active contour model which distinguishes the background and textures of interest. The existence of a minimizing solution to the proposed segmentation model is proven. Finally, a texture segmentation algorithm based on the Split-Bregrnan method is introduced to extract meaningful objects in a fast way. Promising synthetic and real-world results for gray-scale and color images are presented.展开更多
Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the sup...Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.展开更多
A fast two-stage geometric active contour algorithm for image segmentation is developed. First, the Eikonal equation problem is quickly solved using an improved fast sweeping method, and a criterion of local minimum o...A fast two-stage geometric active contour algorithm for image segmentation is developed. First, the Eikonal equation problem is quickly solved using an improved fast sweeping method, and a criterion of local minimum of area gradient (LMAG) is presented to extract the optimal arrival time. Then, the final time function is passed as an initial state to an area and length minimizing flow model, which adjusts the interface more accurately and prevents it from leaking. For object with complete and salient edge, using the first stage only is able to obtain an ideal result, and this results in a time complexity of O(M), where M is the number of points in each coordinate direction. Both stages are needed for convoluted shapes, but the computation cost can be drastically reduced. Efficiency of the algorithm is verified in segmentation experiments of real images with different feature.展开更多
Gradient vector flow (GVF) is an effective external force for active contours, but its iso- tropic nature handicaps its performance. The recently proposed gradient vector flow in the normal direction (NGVF) is ani...Gradient vector flow (GVF) is an effective external force for active contours, but its iso- tropic nature handicaps its performance. The recently proposed gradient vector flow in the normal direction (NGVF) is anisotropic since it only keeps the diffusion along the normal direction of the isophotes; however, it has difficulties forcing a snake into long, thin boundary indentations. In this paper, a novel external force for active contours called normally generalized gradient vector flow (NGGVF) is proposed, which generalizes the NGVF formulation to include two spatially varying weighting functions. Consequently, the proposed NGGVF snake is anisotropic and would improve ac- tive contour convergence into long, thin boundary indentations while maintaining other desirable properties of the NGVF snake, such as enlarged capture range, initialization insensitivity and good convergence at concavities. The advantages on synthetic and real images are demonstrated.展开更多
A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with redu...A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with reduced computational complexity and better numerical stability resulted from the finite element method. In this model, a cubic B-spline segment is taken as an element, and the finite element method is adopted to solve the energy minimization problem of the B-spline active contour, thus to implement image segmentation. Experiment results verify that this method is efficient for B-spline active contour, which attains stable, accurate and faster convergence.展开更多
MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, in...MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.展开更多
Automatic interpretation of the images of colon cell biopsies requires automatic segmentation of these cells in the image obtained. The active contour method for image segmentation is a well known method for automatic...Automatic interpretation of the images of colon cell biopsies requires automatic segmentation of these cells in the image obtained. The active contour method for image segmentation is a well known method for automatic detection of the cell contour. However, the application of this method on colon cell images was not effective. In this paper, the authors have proposed a new technique to reduce the analysis time needed to detect cells in a given image. This technique is based on the active contour method but now using a progressive division of the dimensions of the image to achieve convergence. The model proposed succeeded in detecting cells whose boundaries are not necessarily defined by a gradient. The initial curve can be anywhere in the image, and interior contours can be automatically detected. The developed algorithm was successfully applied on textured multispectral images of three types of cells, including benign hyperplasia (BH), intraepithelial neoplasia (IN), and carcinoma (Ca) cells.展开更多
Liver hydatid disease is a common parasitic disease in farm and pastoral areas, which seriously influences people's health. Based on CT imaging features of this disease, an iterative approach for liver segmentatio...Liver hydatid disease is a common parasitic disease in farm and pastoral areas, which seriously influences people's health. Based on CT imaging features of this disease, an iterative approach for liver segmentation and hydatid lesion extraction simultaneously is proposed. In each iteration, our algorithm consists of two main steps: 1) according to the user-defined pixel seeds in the liver and hydatid lesion, Gaussian probability model fitting and smoothed Bayesian classification are applied to get initial segmentation of liver and lesion; 2) the parametric active contour model using priori shape force field is adopted to refine initial segmentation. We make subjective and objective evaluation on the proposed algorithm validity by the experiments of liver and hydatid lesion segmentation on different patients' CT slices. In comparison with ground-truth manual segmentation results, the experimental results show the effectiveness of our method to segment liver and hydatid lesion.展开更多
In the present study, a generalized active contour model of gradient vector flow is combined with the video techniques of Argus system to delineate and track sequential nearshore wave crest profiles in the shoaling pr...In the present study, a generalized active contour model of gradient vector flow is combined with the video techniques of Argus system to delineate and track sequential nearshore wave crest profiles in the shoaling process, up to their breaking on the shoreline. Previous applications of active contour models to water wave problems are limited to controllable wave tank experiments. By contrast, our application in this study is in a nearshore field environment where oblique images obtained under natural and varying condition of ambient light are employed. Existing Argus techniques produce plane image data or time series data from a selected small subset of discrete pixels. By contrast, the active contour model produces line image data along continuous visible curves such as wave crest profiles. The combination of these two existing techniques, the active contour model and Argus methodologies, facilitates the estimates of the direction wave field and phase speeds within the whole area covered by camera. These estimates are useful for the purpose of inverse calculation of the water depth. Applications of the present techniques to Hsi-tzu bay where a beach restoration program is currently undertaken are illustrated. This extension of Argus video techniques provides new application of optical remote sensing to study the hydrodynamics and morphology of a nearshore environment.展开更多
A novel active contour model is proposed, which incorporates local information distributions in a fuzzy energy function to effectively deal with the intensity inhomogeneity. Moreover, the proposed model is convex with...A novel active contour model is proposed, which incorporates local information distributions in a fuzzy energy function to effectively deal with the intensity inhomogeneity. Moreover, the proposed model is convex with respect to the variable which is used for extracting the contour. This makes the model independent on the initial condition and suitable for an automatic segmentation. Furthermore, the energy function is minimized in a computationally efficient way by calculating the fuzzy energy alterations directly. Experiments are carried out to prove the performance of the proposed model over some existing methods. The obtained results confirm the efficiency of the method.展开更多
The measurement of thickness of material removed between serial sections is a crucial step of three-dimensional reconstruction. Active contour model is an efficient method for contour detection of objects on an image....The measurement of thickness of material removed between serial sections is a crucial step of three-dimensional reconstruction. Active contour model is an efficient method for contour detection of objects on an image. Based on the segmentation of the FeAl/ZrO2 composite image by using adaptive threshold, the gradient vector flow (GVF) snake was used to detect the contour of the indent. The horizontal diagonal length and the vertical diagonal length of the indent contour were acquired by measuring the distance from the uppermost snaxel to the lowermost snaxel and that from the leftmost snaxel to the rightmost snaxel respectively. Then the final diagonal length was gotten by averaging the vertical diagonal length and the horizontal diagonal length. The Vickers indenter was made by a square pyramidal-shaped diamond with opposite faces at an angle of 136°, so the geometrical relation was established between the thickness of material removed between two successive serial sections and the difference of diagonal length on the two serial sections. Based on the relation, the thickness of material removed between two successive serial sections was calculated using the two successive diagonals.展开更多
Traditional texture region location methods with Gabor features are often limited in the selection of Gabor filters and fail to deal with the target which contains both texture and non-texture parts.Thus,to solve this...Traditional texture region location methods with Gabor features are often limited in the selection of Gabor filters and fail to deal with the target which contains both texture and non-texture parts.Thus,to solve this problem,a two-step new model was proposed.In the first step,the original features extracted by Gabor filters are applied to training a self-organizing map(SOM) neural network and a novel merging scheme is presented to achieve the clustering.A back propagation(BP) network is used as a classifier to locate the target region approximately.In the second step,Chan-Vese active contour model is applied to detecting the boundary of the target region accurately and morphological processing is used to create a connected domain whose convex hull can cover the target region.In the experiments,the proposed method is demonstrated accurate and robust in localizing target on texture database and practical barcode location system as well.展开更多
While executing tasks such as ocean pollution monitoring,maritime rescue,geographic mapping,and automatic navigation utilizing remote sensing images,the coastline feature should be determined.Traditional methods are n...While executing tasks such as ocean pollution monitoring,maritime rescue,geographic mapping,and automatic navigation utilizing remote sensing images,the coastline feature should be determined.Traditional methods are not satisfactory to extract coastline in high-resolution panchromatic remote sensing image.Active contour model,also called snakes,have proven useful for interactive specification of image contours,so it is used as an effective coastlines extraction technique.Firstly,coastlines are detected by water segmentation and boundary tracking,which are considered initial contours to be optimized through active contour model.As better energy functions are developed,the power assist of snakes becomes effective.New internal energy has been done to reduce problems caused by convergence to local minima,and new external energy can greatly enlarge the capture region around features of interest.After normalization processing,energies are iterated using greedy algorithm to accelerate convergence rate.The experimental results encompassed examples in images and demonstrated the capabilities and efficiencies of the improvement.展开更多
This research implements a novel segmentation of mammographic mass.Three methods are proposed,namely,segmentation of mass based on iterative active contour,automatic region growing,and fully automatic mask selectionba...This research implements a novel segmentation of mammographic mass.Three methods are proposed,namely,segmentation of mass based on iterative active contour,automatic region growing,and fully automatic mask selectionbased active contour techniques.In the first method,iterative threshold is performed for manual cropped preprocessed image,and active contour is applied thereafter.To overcome manual cropping in the second method,an automatic seed selection followed by region growing is performed.Given that the result is only a few images owing to over segmentation,the third method uses a fully automatic active contour.Results of the segmentation techniques are compared with the manual markup by experts,specifically by taking the difference in their mean values.Accordingly,the difference in the mean value of the third method is 1.0853,which indicates the closeness of the segmentation.Moreover,the proposed method is compared with the existing fuzzy C means and level set methods.The automatic mass segmentation based on active contour technique results in segmentation with high accuracy.By using adaptive neuro fuzzy inference system,classification is done and results in a sensitivity of 94.73%,accuracy of 93.93%,and Mathew’s correlation coefficient(MCC)of 0.876.展开更多
In this paper, we present a novel region-based active contour model based on global in-tensity fitting energy in a variational level set framework. Meanwhile, an internal energy term is in-troduced, and it forces the ...In this paper, we present a novel region-based active contour model based on global in-tensity fitting energy in a variational level set framework. Meanwhile, an internal energy term is in-troduced, and it forces the level set function to be close to a signed distance function. Image global information utilized efficiently makes the proposed model insensitive to noise, and the introduced penalty term can avoid the costly re-initialization for the evolving level set function, which not only speeds up the contour evolvement, but also improves accuracy of the final contour. Comparisons with other classical region-based models, such as Chan-Vese model and Region-Scalable Fitting (RSF) model, show the advantages of our model in terms of efficiency and accuracy. Moreover, the model is robust to noise.展开更多
General active contour algorithm, which uses the intensity of the image, has been used to actively segment objects. Because the objects have a similar intensity but different colors, it is difficult to segment any obj...General active contour algorithm, which uses the intensity of the image, has been used to actively segment objects. Because the objects have a similar intensity but different colors, it is difficult to segment any object from the others, Moreover, this algodthm can only be used in the simple environment since it is very sensitive to noise. In tinter to solve these problems. This paper proposes an extended active contour algorithm based on a color variance. In complex images, the color variance energy as the image energy is introduced into the general active contour algorithm. Experimental results show that the proposed active contour algorithm is very effective in various environments.展开更多
Automatic pectoral muscle removal on medio-lateral oblique (MLO) view of mammogram is an essential step for many mammographic processing algorithms. However,it is still a very difficult task since the sizes,the shapes...Automatic pectoral muscle removal on medio-lateral oblique (MLO) view of mammogram is an essential step for many mammographic processing algorithms. However,it is still a very difficult task since the sizes,the shapes and the intensity contrasts of pectoral muscles change greatly from one MLO view to another. In this paper,we propose a novel method based on a discrete time Markov chain (DTMC) and an active contour model to automatically detect the pectoral muscle boundary. DTMC is used to model two important characteristics of the pectoral muscle edge,i.e.,continuity and uncertainty. After obtaining a rough boundary,an active contour model is applied to refine the detection results. The experimental results on images from the Digital Database for Screening Mammography (DDSM) showed that our method can overcome many limitations of existing algorithms. The false positive (FP) and false negative (FN) pixel percentages are less than 5% in 77.5% mammograms. The detection precision of 91% meets the clinical requirement.展开更多
The aim of this work is to develop an improved region based active contour and dynamic programming based method for accurate segmentation of left ventricle (LV) from multi-slice cine short axis cardiac magnetic reso...The aim of this work is to develop an improved region based active contour and dynamic programming based method for accurate segmentation of left ventricle (LV) from multi-slice cine short axis cardiac magnetic resonance (MR) images. Intensity inhomogeneity and weak object boundaries present in MR images hinder the segmentation accuracy. The proposed active contour model driven by a local Gaussian distribution fitting (LGDF) energy and an auxiliary global intensity fitting energy improves the accuracy of endocardial boundary detection. The weightage of the global energy fitting term is dynamically adjusted using a spatially varying weight function. Dynamic programming scheme proposed for the segmentation of epicardium considers the myocardium probability map and a distance weighted edge map in the cost matrix. Radial distance weighted technique and conical geometry are employed for segmenting the basal slices with left ventricle outflow tract (LVOT) and most apical slices. The proposed method is validated on a public dataset comprising 45 subjects from medical image computing and computer assisted interventions (MICCAI) 2009 segmentation challenge. The average percentage of good endocardial and epicardial contours detected is about 99%, average perpendicular distance of the detected good contours from the manual reference contours is 1.95 mm, and the dice similarity coefficient between the detected contours and the reference contours is 0.91. Correlation coefficient and the coefficient of determination between the ejection fraction measurements from manual segmentation and the automated method are respectively 0.9781 and 0.9567, for LV mass these values are 0.9249 and 0.8554. Statistical analysis of the results reveals a good agreement between the clinical parameters determined manually and those estimated using the automated method.展开更多
Accurate mass segmentation on mammograms is a critical step in computer-aided diagnosis (CAD) systems. It is also a challenging task since some of the mass lesions are embedded in normal tissues and possess poor contr...Accurate mass segmentation on mammograms is a critical step in computer-aided diagnosis (CAD) systems. It is also a challenging task since some of the mass lesions are embedded in normal tissues and possess poor contrast or ambiguous margins. Besides, the shapes and densities of masses in mammograms are various. In this paper, a hybrid method combining a random walks algorithm and Chan-Vese (CV) active contour is proposed for automatic mass segmentation on mammograms. The data set used in this study consists of 1095 mass regions of interest (ROIs). First, the original ROI is preprocessed to suppress noise and surrounding tissues. Based on the preprocessed ROI, a set of seed points is generated for initial random walks segmentation. Afterward, an initial contour of mass and two probability matrices are produced by the initial random walks segmentation. These two probability matrices are used to modify the energy function of the CV model for prevention of contour leaking. Lastly, the final segmentation result is derived by the modified CV model, during which the probability matrices are updated by inserting several rounds of random walks. The proposed method is tested and compared with other four methods. The segmentation results are evaluated based on four evaluation metrics. Experimental results indicate that the proposed method produces more accurate mass segmentation results than the other four methods.展开更多
基金Supported by the National Basic Research Program of China(2011CB707904)the Natural Science Foundation of China(61472289)Hubei Province Natural Science Foundation of China(2015CFB254)
文摘Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-aided therapy, has been widely used in the treatment of uterine fibroids. However, such segmentation in HIFU remains challenge for two reasons: (1) the blurry or missing boundaries of lesion regions in the HIFU images and (2) the deformation of uterine fibroids caused by the patient's breathing or an external force during the US imaging process, which can lead to complex shapes of lesion regions. These factors have prevented classical active contour-based segmentation methods from yielding desired results for uterine fibroids in US images. In this paper, a novel active contour-based segmentation method is proposed, which utilizes the correlation information of target shapes among a sequence of images as prior knowledge to aid the existing active contour method. This prior knowledge can be interpreted as a unsupervised clustering of shapes prior modeling. Meanwhile, it is also proved that the shapes correlation has the low-rank property in a linear space, and the theory of matrix recovery is used as an effective tool to impose the proposed prior on an existing active contour model. Finally, an accurate method is developed to solve the proposed model by using the Augmented Lagrange Multiplier (ALM). Experimental results from both synthetic and clinical uterine fibroids US image sequences demonstrate that the proposed method can consistently improve the performance of active contour models and increase the robustness against missing or misleading boundaries, and can greatly improve the efficiency of HIFU therapy.
基金supported by Swiss National Science Foundation Grant #205320-101621supported by ONR N00014-03-1-0071
文摘In this paper, we present an efficient approach for unsupervised segmentation of natural and textural images based on the extraction of image features and a fast active contour segmentation model. We address the problem of textures where neither the gray-level information nor the boundary information is adequate for object extraction. This is often the case of natural images composed of both homogeneous and textured regions. Because these images cannot be in general directly processed by the gray-level information, we propose a new texture descriptor which intrinsically defines the geometry of textures using semi-local image information and tools from differential geometry. Then, we use the popular Kullback-Leibler distance to design an active contour model which distinguishes the background and textures of interest. The existence of a minimizing solution to the proposed segmentation model is proven. Finally, a texture segmentation algorithm based on the Split-Bregrnan method is introduced to extract meaningful objects in a fast way. Promising synthetic and real-world results for gray-scale and color images are presented.
基金supported by the National Natural Science Foundation of China(4117132741301361)+2 种基金the National Key Basic Research Program of China(973 Program)(2012CB719903)the Science and Technology Project of Ministry of Transport of People’s Republic of China(2012-364-X11-803)the Shanghai Municipal Natural Science Foundation(12ZR1433200)
文摘Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.
文摘A fast two-stage geometric active contour algorithm for image segmentation is developed. First, the Eikonal equation problem is quickly solved using an improved fast sweeping method, and a criterion of local minimum of area gradient (LMAG) is presented to extract the optimal arrival time. Then, the final time function is passed as an initial state to an area and length minimizing flow model, which adjusts the interface more accurately and prevents it from leaking. For object with complete and salient edge, using the first stage only is able to obtain an ideal result, and this results in a time complexity of O(M), where M is the number of points in each coordinate direction. Both stages are needed for convoluted shapes, but the computation cost can be drastically reduced. Efficiency of the algorithm is verified in segmentation experiments of real images with different feature.
基金Supported by the National Natural Science Foundation of China(60805004)the State Key Lab of Space Medicine Fundamen-tals and Application(SMFA09A16)
文摘Gradient vector flow (GVF) is an effective external force for active contours, but its iso- tropic nature handicaps its performance. The recently proposed gradient vector flow in the normal direction (NGVF) is anisotropic since it only keeps the diffusion along the normal direction of the isophotes; however, it has difficulties forcing a snake into long, thin boundary indentations. In this paper, a novel external force for active contours called normally generalized gradient vector flow (NGGVF) is proposed, which generalizes the NGVF formulation to include two spatially varying weighting functions. Consequently, the proposed NGGVF snake is anisotropic and would improve ac- tive contour convergence into long, thin boundary indentations while maintaining other desirable properties of the NGVF snake, such as enlarged capture range, initialization insensitivity and good convergence at concavities. The advantages on synthetic and real images are demonstrated.
基金the National Natural Science Foundation of China (No.59975057).
文摘A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with reduced computational complexity and better numerical stability resulted from the finite element method. In this model, a cubic B-spline segment is taken as an element, and the finite element method is adopted to solve the energy minimization problem of the B-spline active contour, thus to implement image segmentation. Experiment results verify that this method is efficient for B-spline active contour, which attains stable, accurate and faster convergence.
文摘MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.
文摘Automatic interpretation of the images of colon cell biopsies requires automatic segmentation of these cells in the image obtained. The active contour method for image segmentation is a well known method for automatic detection of the cell contour. However, the application of this method on colon cell images was not effective. In this paper, the authors have proposed a new technique to reduce the analysis time needed to detect cells in a given image. This technique is based on the active contour method but now using a progressive division of the dimensions of the image to achieve convergence. The model proposed succeeded in detecting cells whose boundaries are not necessarily defined by a gradient. The initial curve can be anywhere in the image, and interior contours can be automatically detected. The developed algorithm was successfully applied on textured multispectral images of three types of cells, including benign hyperplasia (BH), intraepithelial neoplasia (IN), and carcinoma (Ca) cells.
基金Science Special Fund for "Special Training" of Ethnical Minority Professional and Technical Intelligent in Xinjiang sponsored by the Scienceand Technology Department of Xinjiang Uygur Autonomous Regiongrant number:200723104+1 种基金National Natural Science Foundation of Chinagrant number:30960097
文摘Liver hydatid disease is a common parasitic disease in farm and pastoral areas, which seriously influences people's health. Based on CT imaging features of this disease, an iterative approach for liver segmentation and hydatid lesion extraction simultaneously is proposed. In each iteration, our algorithm consists of two main steps: 1) according to the user-defined pixel seeds in the liver and hydatid lesion, Gaussian probability model fitting and smoothed Bayesian classification are applied to get initial segmentation of liver and lesion; 2) the parametric active contour model using priori shape force field is adopted to refine initial segmentation. We make subjective and objective evaluation on the proposed algorithm validity by the experiments of liver and hydatid lesion segmentation on different patients' CT slices. In comparison with ground-truth manual segmentation results, the experimental results show the effectiveness of our method to segment liver and hydatid lesion.
基金supported by the Science Council,Taiwan,under Grant No.NSC95-2221-E-006-475-MY2
文摘In the present study, a generalized active contour model of gradient vector flow is combined with the video techniques of Argus system to delineate and track sequential nearshore wave crest profiles in the shoaling process, up to their breaking on the shoreline. Previous applications of active contour models to water wave problems are limited to controllable wave tank experiments. By contrast, our application in this study is in a nearshore field environment where oblique images obtained under natural and varying condition of ambient light are employed. Existing Argus techniques produce plane image data or time series data from a selected small subset of discrete pixels. By contrast, the active contour model produces line image data along continuous visible curves such as wave crest profiles. The combination of these two existing techniques, the active contour model and Argus methodologies, facilitates the estimates of the direction wave field and phase speeds within the whole area covered by camera. These estimates are useful for the purpose of inverse calculation of the water depth. Applications of the present techniques to Hsi-tzu bay where a beach restoration program is currently undertaken are illustrated. This extension of Argus video techniques provides new application of optical remote sensing to study the hydrodynamics and morphology of a nearshore environment.
文摘A novel active contour model is proposed, which incorporates local information distributions in a fuzzy energy function to effectively deal with the intensity inhomogeneity. Moreover, the proposed model is convex with respect to the variable which is used for extracting the contour. This makes the model independent on the initial condition and suitable for an automatic segmentation. Furthermore, the energy function is minimized in a computationally efficient way by calculating the fuzzy energy alterations directly. Experiments are carried out to prove the performance of the proposed model over some existing methods. The obtained results confirm the efficiency of the method.
基金Sponsored by the National Natural Science Foundation of China (Grant No.60873089)the Doctoral Fund of Shandong Province( Grant No.2007BS04018)
文摘The measurement of thickness of material removed between serial sections is a crucial step of three-dimensional reconstruction. Active contour model is an efficient method for contour detection of objects on an image. Based on the segmentation of the FeAl/ZrO2 composite image by using adaptive threshold, the gradient vector flow (GVF) snake was used to detect the contour of the indent. The horizontal diagonal length and the vertical diagonal length of the indent contour were acquired by measuring the distance from the uppermost snaxel to the lowermost snaxel and that from the leftmost snaxel to the rightmost snaxel respectively. Then the final diagonal length was gotten by averaging the vertical diagonal length and the horizontal diagonal length. The Vickers indenter was made by a square pyramidal-shaped diamond with opposite faces at an angle of 136°, so the geometrical relation was established between the thickness of material removed between two successive serial sections and the difference of diagonal length on the two serial sections. Based on the relation, the thickness of material removed between two successive serial sections was calculated using the two successive diagonals.
基金Supported by Tianjin Natural Science Fundation (No.07JCZDJC05800)
文摘Traditional texture region location methods with Gabor features are often limited in the selection of Gabor filters and fail to deal with the target which contains both texture and non-texture parts.Thus,to solve this problem,a two-step new model was proposed.In the first step,the original features extracted by Gabor filters are applied to training a self-organizing map(SOM) neural network and a novel merging scheme is presented to achieve the clustering.A back propagation(BP) network is used as a classifier to locate the target region approximately.In the second step,Chan-Vese active contour model is applied to detecting the boundary of the target region accurately and morphological processing is used to create a connected domain whose convex hull can cover the target region.In the experiments,the proposed method is demonstrated accurate and robust in localizing target on texture database and practical barcode location system as well.
基金Sponsoreds by the National Natural Science Foundation of China (Grant No. 60575016)
文摘While executing tasks such as ocean pollution monitoring,maritime rescue,geographic mapping,and automatic navigation utilizing remote sensing images,the coastline feature should be determined.Traditional methods are not satisfactory to extract coastline in high-resolution panchromatic remote sensing image.Active contour model,also called snakes,have proven useful for interactive specification of image contours,so it is used as an effective coastlines extraction technique.Firstly,coastlines are detected by water segmentation and boundary tracking,which are considered initial contours to be optimized through active contour model.As better energy functions are developed,the power assist of snakes becomes effective.New internal energy has been done to reduce problems caused by convergence to local minima,and new external energy can greatly enlarge the capture region around features of interest.After normalization processing,energies are iterated using greedy algorithm to accelerate convergence rate.The experimental results encompassed examples in images and demonstrated the capabilities and efficiencies of the improvement.
文摘This research implements a novel segmentation of mammographic mass.Three methods are proposed,namely,segmentation of mass based on iterative active contour,automatic region growing,and fully automatic mask selectionbased active contour techniques.In the first method,iterative threshold is performed for manual cropped preprocessed image,and active contour is applied thereafter.To overcome manual cropping in the second method,an automatic seed selection followed by region growing is performed.Given that the result is only a few images owing to over segmentation,the third method uses a fully automatic active contour.Results of the segmentation techniques are compared with the manual markup by experts,specifically by taking the difference in their mean values.Accordingly,the difference in the mean value of the third method is 1.0853,which indicates the closeness of the segmentation.Moreover,the proposed method is compared with the existing fuzzy C means and level set methods.The automatic mass segmentation based on active contour technique results in segmentation with high accuracy.By using adaptive neuro fuzzy inference system,classification is done and results in a sensitivity of 94.73%,accuracy of 93.93%,and Mathew’s correlation coefficient(MCC)of 0.876.
基金Supported by the State Key Program of National Natural Science of China (No. 61003134, 60736008)the National Natural Science Foundation of China (No. 60803082)the Key Program of Natural Science of Beijing (No.4081002)
文摘In this paper, we present a novel region-based active contour model based on global in-tensity fitting energy in a variational level set framework. Meanwhile, an internal energy term is in-troduced, and it forces the level set function to be close to a signed distance function. Image global information utilized efficiently makes the proposed model insensitive to noise, and the introduced penalty term can avoid the costly re-initialization for the evolving level set function, which not only speeds up the contour evolvement, but also improves accuracy of the final contour. Comparisons with other classical region-based models, such as Chan-Vese model and Region-Scalable Fitting (RSF) model, show the advantages of our model in terms of efficiency and accuracy. Moreover, the model is robust to noise.
基金supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD),the MKE(The Ministry of knowledge Economy,Korea)the ITRC(Information Technology Research Center)support program(NIPA-2009-(C1090-0902-0007))
文摘General active contour algorithm, which uses the intensity of the image, has been used to actively segment objects. Because the objects have a similar intensity but different colors, it is difficult to segment any object from the others, Moreover, this algodthm can only be used in the simple environment since it is very sensitive to noise. In tinter to solve these problems. This paper proposes an extended active contour algorithm based on a color variance. In complex images, the color variance energy as the image energy is introduced into the general active contour algorithm. Experimental results show that the proposed active contour algorithm is very effective in various environments.
基金Project (No. 60505009) supported by the National Natural Science Foundation of China
文摘Automatic pectoral muscle removal on medio-lateral oblique (MLO) view of mammogram is an essential step for many mammographic processing algorithms. However,it is still a very difficult task since the sizes,the shapes and the intensity contrasts of pectoral muscles change greatly from one MLO view to another. In this paper,we propose a novel method based on a discrete time Markov chain (DTMC) and an active contour model to automatically detect the pectoral muscle boundary. DTMC is used to model two important characteristics of the pectoral muscle edge,i.e.,continuity and uncertainty. After obtaining a rough boundary,an active contour model is applied to refine the detection results. The experimental results on images from the Digital Database for Screening Mammography (DDSM) showed that our method can overcome many limitations of existing algorithms. The false positive (FP) and false negative (FN) pixel percentages are less than 5% in 77.5% mammograms. The detection precision of 91% meets the clinical requirement.
基金supported by Department of Science and Technology, Ministry of Science and Technology, India (No. DST/TSG/ICT/2010/08)
文摘The aim of this work is to develop an improved region based active contour and dynamic programming based method for accurate segmentation of left ventricle (LV) from multi-slice cine short axis cardiac magnetic resonance (MR) images. Intensity inhomogeneity and weak object boundaries present in MR images hinder the segmentation accuracy. The proposed active contour model driven by a local Gaussian distribution fitting (LGDF) energy and an auxiliary global intensity fitting energy improves the accuracy of endocardial boundary detection. The weightage of the global energy fitting term is dynamically adjusted using a spatially varying weight function. Dynamic programming scheme proposed for the segmentation of epicardium considers the myocardium probability map and a distance weighted edge map in the cost matrix. Radial distance weighted technique and conical geometry are employed for segmenting the basal slices with left ventricle outflow tract (LVOT) and most apical slices. The proposed method is validated on a public dataset comprising 45 subjects from medical image computing and computer assisted interventions (MICCAI) 2009 segmentation challenge. The average percentage of good endocardial and epicardial contours detected is about 99%, average perpendicular distance of the detected good contours from the manual reference contours is 1.95 mm, and the dice similarity coefficient between the detected contours and the reference contours is 0.91. Correlation coefficient and the coefficient of determination between the ejection fraction measurements from manual segmentation and the automated method are respectively 0.9781 and 0.9567, for LV mass these values are 0.9249 and 0.8554. Statistical analysis of the results reveals a good agreement between the clinical parameters determined manually and those estimated using the automated method.
基金Project (Nos. 60772092 and 81101903) supported by the National Natural Science Foundation of China
文摘Accurate mass segmentation on mammograms is a critical step in computer-aided diagnosis (CAD) systems. It is also a challenging task since some of the mass lesions are embedded in normal tissues and possess poor contrast or ambiguous margins. Besides, the shapes and densities of masses in mammograms are various. In this paper, a hybrid method combining a random walks algorithm and Chan-Vese (CV) active contour is proposed for automatic mass segmentation on mammograms. The data set used in this study consists of 1095 mass regions of interest (ROIs). First, the original ROI is preprocessed to suppress noise and surrounding tissues. Based on the preprocessed ROI, a set of seed points is generated for initial random walks segmentation. Afterward, an initial contour of mass and two probability matrices are produced by the initial random walks segmentation. These two probability matrices are used to modify the energy function of the CV model for prevention of contour leaking. Lastly, the final segmentation result is derived by the modified CV model, during which the probability matrices are updated by inserting several rounds of random walks. The proposed method is tested and compared with other four methods. The segmentation results are evaluated based on four evaluation metrics. Experimental results indicate that the proposed method produces more accurate mass segmentation results than the other four methods.