The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents ...The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.展开更多
Vehicular ad hoc networks(VANETs)provide intelligent navigation and efficient route management,resulting in time savings and cost reductions in the transportation sector.However,the exchange of beacons and messages ov...Vehicular ad hoc networks(VANETs)provide intelligent navigation and efficient route management,resulting in time savings and cost reductions in the transportation sector.However,the exchange of beacons and messages over public channels among vehicles and roadside units renders these networks vulnerable to numerous attacks and privacy violations.To address these challenges,several privacy and security preservation protocols based on blockchain and public key cryptography have been proposed recently.However,most of these schemes are limited by a long execution time and massive communication costs,which make them inefficient for on-board units(OBUs).Additionally,some of them are still susceptible to many attacks.As such,this study presents a novel protocol based on the fusion of elliptic curve cryptography(ECC)and bilinear pairing(BP)operations.The formal security analysis is accomplished using the Burrows–Abadi–Needham(BAN)logic,demonstrating that our scheme is verifiably secure.The proposed scheme’s informal security assessment also shows that it provides salient security features,such as non-repudiation,anonymity,and unlinkability.Moreover,the scheme is shown to be resilient against attacks,such as packet replays,forgeries,message falsifications,and impersonations.From the performance perspective,this protocol yields a 37.88%reduction in communication overheads and a 44.44%improvement in the supported security features.Therefore,the proposed scheme can be deployed in VANETs to provide robust security at low overheads.展开更多
In this paper,we propose a Multi-token Sector Antenna Neighbor Discovery(M-SAND)protocol to enhance the efficiency of neighbor discovery in asynchronous directional ad hoc networks.The central concept of our work invo...In this paper,we propose a Multi-token Sector Antenna Neighbor Discovery(M-SAND)protocol to enhance the efficiency of neighbor discovery in asynchronous directional ad hoc networks.The central concept of our work involves maintaining multiple tokens across the network.To prevent mutual interference among multi-token holders,we introduce the time and space non-interference theorems.Furthermore,we propose a master-slave strategy between tokens.When the master token holder(MTH)performs the neighbor discovery,it decides which 1-hop neighbor is the next MTH and which 2-hop neighbors can be the new slave token holders(STHs).Using this approach,the MTH and multiple STHs can simultaneously discover their neighbors without causing interference with each other.Building on this foundation,we provide a comprehensive procedure for the M-SAND protocol.We also conduct theoretical analyses on the maximum number of STHs and the lower bound of multi-token generation probability.Finally,simulation results demonstrate the time efficiency of the M-SAND protocol.When compared to the QSAND protocol,which uses only one token,the total neighbor discovery time is reduced by 28% when 6beams and 112 nodes are employed.展开更多
The foundation of ad hoc networks lies in the guarantee of continuous connectivity.However,critical nodes,whose failure can easily destroy network connectivity,will influence the ad hoc network connectivity significan...The foundation of ad hoc networks lies in the guarantee of continuous connectivity.However,critical nodes,whose failure can easily destroy network connectivity,will influence the ad hoc network connectivity significantly.To protect the network efficiently,critical nodes should be identified accurately and rapidly.Unlike existing critical node identification methods for unknown topology that identify critical nodes according to historical information,this paper develops a critical node identification method to relax the prior topology information condition about critical nodes.Specifically,we first deduce a theorem about the minimum communication range for a node through the number of nodes and deployment ranges,and prove the universality of the theorem in a realistic two-dimensional scenario.After that,we analyze the relationship between communication range and degree value for each node and prove that the greater number of nodes within the communication range of a node,the greater degree value of nodes with high probability.Moreover,we develop a novel strategy to improve the accuracy of critical node identification without topology information.Finally,simulation results indicate the proposed strategy can achieve high accuracy and low redundancy while ensuring low time consumption in the scenarios with unknown topology information in ad hoc networks.展开更多
Vehicle Ad hoc Networks(VANETs)have high mobility and a rando-mized connection structure,resulting in extremely dynamic behavior.Several challenges,such as frequent connection failures,sustainability,multi-hop data tr...Vehicle Ad hoc Networks(VANETs)have high mobility and a rando-mized connection structure,resulting in extremely dynamic behavior.Several challenges,such as frequent connection failures,sustainability,multi-hop data transfer,and data loss,affect the effectiveness of Transmission Control Protocols(TCP)on such wireless ad hoc networks.To avoid the problem,in this paper,mobility-aware zone-based routing in VANET is proposed.To achieve this con-cept,in this paper hybrid optimization algorithm is presented.The hybrid algo-rithm is a combination of Ant colony optimization(ACO)and artificial bee colony optimization(ABC).The proposed hybrid algorithm is designed for the routing process which is transmitting the information from one place to another.The optimal routing process is used to avoid traffic and link failure.Thefitness function is designed based on Link stability and Residual energy.The validation of the proposed algorithm takes solution encoding,fitness calculation,and updat-ing functions.To perform simulation experiments,NS2 simulator software is used.The performance of the proposed approach is analyzed based on different metrics namely,delivery ratio,delay time,throughput,and overhead.The effec-tiveness of the proposed method compared with different algorithms.Compared to other existing VANET algorithms,the hybrid algorithm has proven to be very efficient in terms of packet delivery ratio and delay.展开更多
To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With th...To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.展开更多
In this paper we analyze connectivity of one-dimensional Vehicular Ad Hoc Networks where vehicle gap distribution can be approximat- ed by an exponential distribution. The probabilities of Vehicular Ad Hoc Network con...In this paper we analyze connectivity of one-dimensional Vehicular Ad Hoc Networks where vehicle gap distribution can be approximat- ed by an exponential distribution. The probabilities of Vehicular Ad Hoc Network connectivity for difference cases are derived. Furthermore we proof that the nodes in a sub-interval [z1, z1 + △z] of interval [0,z],z 〉 0 where all the nodes are independently uniform distributed is a Poisson process and the relationship of Vehicle Ad hoc Networks and one-dimensional Ad Hoc networks where nodes independently uniform distributed in [zl, z1 + △z] is explained. The analysis is validated by computing the probability of network connectivity and comparing it with the Mont Carlo simu- lation results.展开更多
In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random...In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random geometrics. Through mathematical proof the optimal number of relay nodes and the optimal location of each node for data transmission can be obtained when a distance is given.In the ADPC first the source node computes the optimal number and the sites of the relay nodes between the source and the destination nodes.Then it searches feasible relay nodes around the optimal virtual relay-sites and selects one link with the minimal total transmission energy consumption for data transmission.Simulation results show that the ADPC can reduce both the energy dissipation and the end-to-end latency of the transmission.展开更多
An improved internetworking approach is proposed to enhance the Internet connectivity which is deteriorated due to unidirectional links and blind rebroadcasting of gateway discovery packets for mobile ad hoc networks....An improved internetworking approach is proposed to enhance the Internet connectivity which is deteriorated due to unidirectional links and blind rebroadcasting of gateway discovery packets for mobile ad hoc networks. The hybrid gateway discovery scheme that combined the advantages of a proactive and reactive gateway discovery approach is used to achieve high connectivity while keeping overhead costs low. By exchanging ad hoc on-demand distance vector (AODV) hello packet which includes additional fields named symmetric neighbor list and asymmetric neighbor list, unidirectional links are removed from route computation and broadcast storm can also be relieved simultaneously. Performance results using ns-2 simulations, under varying numbers of unidirectional links and node speeds, show that this improved Internet connectivity approach can provide better performance than others.展开更多
Vehicular Ad hoc Networks(VANETs)become a very crucial addition in the Intelligent Transportation System(ITS).It is challenging for a VANET system to provide security services and parallelly maintain high throughput b...Vehicular Ad hoc Networks(VANETs)become a very crucial addition in the Intelligent Transportation System(ITS).It is challenging for a VANET system to provide security services and parallelly maintain high throughput by utilizing limited resources.To overcome these challenges,we propose a blockchain-based Secured Cluster-based MAC(SCB-MAC)protocol.The nearby vehicles heading towards the same direction will form a cluster and each of the clusters has its blockchain to store and distribute the safety messages.The message which contains emergency information and requires Strict Delay Requirement(SDR)for transmission are called safety messages(SM).Cluster Members(CMs)sign SMs with their private keys while sending them to the blockchain to confirm authentication,integrity,and confidentiality of the message.A Certificate Authority(CA)is responsible for physical verification,key generation,and privacy preservation of the vehicles.We implemented a test scenario as proof of concept and tested the safety message transmission(SMT)protocol in a real-world platform.Computational and storage overhead analysis shows that the proposed protocol for SMT implements security,authentication,integrity,robustness,non-repudiation,etc.while maintaining the SDR.Messages that are less important compared to the SMs are called non-safety messages(NSM)and vehicles use RTS/CTS mechanism for NSM transmission.Numerical studies show that the proposed NSM transmission method maintains 6 times more throughput,2 times less delay and 125%less Packet Dropping Rate(PDR)than traditional MAC protocols.These results prove that the proposed protocol outperforms the traditional MAC protocols.展开更多
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to...Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.展开更多
In traditional networks , the authentication is performed by certificate authoritys(CA),which can't be built in distributed mobile Ad Hoc Networks however. In this pa per, we propose a fully self-organized public k...In traditional networks , the authentication is performed by certificate authoritys(CA),which can't be built in distributed mobile Ad Hoc Networks however. In this pa per, we propose a fully self-organized public key management based on bidirectional trust model without any centralized authority that allows users to generate their public-private key pairs, to issue certificates, and the trust relation spreads rationally according to the truly human relations. In contrast with the traditional self-organized public-key management, the average certificates paths get more short, the authentication passing rate gets more high and the most important is that the bidirectional trust based model satisfys the trust re quirement of hosts better.展开更多
In this paper, the security technology of ad hoc networks is studied.To improve the previous multi-receiver signcryption schemes, an ID-based multi-message and multi-receiver signcryption scheme for rekeying in ad hoc...In this paper, the security technology of ad hoc networks is studied.To improve the previous multi-receiver signcryption schemes, an ID-based multi-message and multi-receiver signcryption scheme for rekeying in ad hoc networks is proposed.In this scheme, a sender can simultaneously signcrypt n messeges for n receivers, and a receiver can unsigncrypt the ciphertext to get his message with his own private key.An analysis of this scheme indicates that it achieves authenticity and confidentiality in the random oracle model while being of lower computation and communication overhead.Finally, for the application of our scheme in ad hoc, a threshold key updating protocol for ad hoc networks is given.展开更多
Currently, there is a growing belief that putting an IEEE 802.11-like radio into road vehicles can help the drivers to travel more safely. Message dissemination protocols are primordial for safety vehicular applicatio...Currently, there is a growing belief that putting an IEEE 802.11-like radio into road vehicles can help the drivers to travel more safely. Message dissemination protocols are primordial for safety vehicular applications. There are two types of safety messages which may be exchanged between vehicles: alarm and beacon. In this paper we investigate the feasibility of deploying safety applications based on beacon message dissemination through extensive simulation study and pay special attention to the safety requirements. Vehicles are supposed to issue these messages periodically to announce to other vehicles their current situation and use received messages for preventing possible unsafe situations. We evaluate the performance of a single-hop dissemination protocol while taking into account the quality of service (QoS) metrics like delivery rate and delay. We realize that reliability is the main concern in beacon message dissemination. Thus, a new metric named effective range is defined which gives us more accurate facility for evaluating QoS in safety applications specifically. Then, in order to improve the performance, the effects of three parameters including vehicle's transmission range, message transmission's interval time and message payload size are studied. Due to special characteristics of the safety applications, we model the relationship between communication-level QoS and application-level QoS and evaluate them for different classes of safety applications. As a conclusion, the current technology of IEEE 802.11 MAC layer has still some challenges for automatic safety applications but it can provide acceptable QoS to driver assistance safety applications.展开更多
The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly f...The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly focuses on the adaptive routing protocol and proposes a Three Dimensional Q-Learning(3DQ)based routing protocol to guarantee the packet delivery ratio and improve the QoS.In 3DQ routing,we propose a Q-Learning based routing decision scheme,which contains a link-state prediction module and routing decision module.The link-state prediction module allows each Unmanned Aerial Vehicle(UAV)to predict the link-state of Neighboring UAVs(NUs),considering their Three Dimensional mobility and packet arrival.Then,UAV can produce routing decisions with the help of the routing decision module considering the link-state.We evaluate the various performance of 3DQ routing,and simulation results demonstrate that 3DQ can improve packet delivery ratio,goodput and delay of baseline protocol at most 71.36%,89.32%and 83.54%in FANETs over a variety of communication scenarios.展开更多
In wireless ad hoe network environments, every link is wireless and every node is mobile. Those features make data lost easily as well as multicasting inefficient and unreliable. Moreover, Efficient and reliable multi...In wireless ad hoe network environments, every link is wireless and every node is mobile. Those features make data lost easily as well as multicasting inefficient and unreliable. Moreover, Efficient and reliable multicast in wireless ad hoe network is a difficult issue. It is a major challenge to transmission delays and packet losses due to link changes of a multicast tree at the provision of high delivery ratio for each packet transmission in wireless ad hoe network environment. In this paler, we propose and evaluate Reliable Adaptive Multicast Protocol (RAMP) based on a relay node concept. Relay nodes are placed along the multieast tree. Data recovery is done between relay nodes. RAMP supports a reliable multicasting suitable for mobile ad hoe network by reducing the number of packet retransmissions. We compare RAMP with SRM (Scalable Reliable Multicast). Simulation results show that the RAMP has high delivery ratio and low end-to-end delay for packet transmsission.展开更多
In recent years,with the rapid development of the Internet and wireless communication technology,wireless Ad hoc networks have received more attention.Due to the limited transmission range and energy of nodes in Ad ho...In recent years,with the rapid development of the Internet and wireless communication technology,wireless Ad hoc networks have received more attention.Due to the limited transmission range and energy of nodes in Ad hoc networks,it is important to establish a reliable and energy-balanced transmission path in Ad hoc networks.This paper proposes an energy-based dynamic routing protocol based on the existing AODV routing protocol,which has the following two aspects of improvement:(1)In the route discovery process,a node selects a suitable route from the minimum energy consumption route and the energy-balanced route designed in this paper according to a“Mark”bit that representing remaining energy of a node.(2)Based on(1),a route interruption update strategy was proposed to restart the route discovery process when node energy was used excessively.Simulation results demonstrate that compared with AODV and other existing routing protocols,proposed algorithm can reduce network energy consumption and balance node energy,thus extending the network lifetime.展开更多
As a new sort of mobile ad hoc network(MANET), aeronautical ad hoc network(AANET) has fleet-moving airborne nodes(ANs) and suffers from frequent network partitioning due to the rapid-changing topology. In this work, t...As a new sort of mobile ad hoc network(MANET), aeronautical ad hoc network(AANET) has fleet-moving airborne nodes(ANs) and suffers from frequent network partitioning due to the rapid-changing topology. In this work, the additional relay nodes(RNs) is employed to repair the network and maintain connectivity in AANET. As ANs move, RNs need to move as well in order to re-establish the topology as quickly as possible. The network model and problem definition are firstly given, and then an online approach for RNs' movement control is presented to make ANs achieve certain connectivity requirement during run time. By defining the minimum cost feasible moving matrix(MCFM), a fast algorithm is proposed for RNs' movement control problem. Simulations demonstrate that the proposed algorithm outperforms other control approaches in the highly-dynamic environment and is of great potential to be applied in AANET.展开更多
In this paper, based on the inherent characteristic of the contention relation between flows in ad hoc networks, we introduce the notion of the link's interference set, extend the utility maximization problem represe...In this paper, based on the inherent characteristic of the contention relation between flows in ad hoc networks, we introduce the notion of the link's interference set, extend the utility maximization problem representing congestion control in wireline networks to ad hoc networks, apply the penalty function approach and the subgradient method to solve this problem, and propose the congestion control algorithm Penalty function-based Optical Congestion Control (POCC) which is implemented in NS2- simulator. Specifically, each link transmits periodically the information on its congestion state to its interference set; the set ; the sermon at each source adjusts the transmission rate based on the optimal tradeoffbetween the utility value and the congestion level which the interference set of the links that this session goes though suffers from. MATLAB-based simulation results showed that POCC can approach the globally optimal solution. The NS2-based simulation results showed that POCC outperforms default TCP and ATCP to achieve efficient and fair resource allocation in ad hoc networks.展开更多
A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is b...A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.展开更多
文摘The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.
基金supported by Teaching Reform Project of Shenzhen University of Technology under Grant No.20231016.
文摘Vehicular ad hoc networks(VANETs)provide intelligent navigation and efficient route management,resulting in time savings and cost reductions in the transportation sector.However,the exchange of beacons and messages over public channels among vehicles and roadside units renders these networks vulnerable to numerous attacks and privacy violations.To address these challenges,several privacy and security preservation protocols based on blockchain and public key cryptography have been proposed recently.However,most of these schemes are limited by a long execution time and massive communication costs,which make them inefficient for on-board units(OBUs).Additionally,some of them are still susceptible to many attacks.As such,this study presents a novel protocol based on the fusion of elliptic curve cryptography(ECC)and bilinear pairing(BP)operations.The formal security analysis is accomplished using the Burrows–Abadi–Needham(BAN)logic,demonstrating that our scheme is verifiably secure.The proposed scheme’s informal security assessment also shows that it provides salient security features,such as non-repudiation,anonymity,and unlinkability.Moreover,the scheme is shown to be resilient against attacks,such as packet replays,forgeries,message falsifications,and impersonations.From the performance perspective,this protocol yields a 37.88%reduction in communication overheads and a 44.44%improvement in the supported security features.Therefore,the proposed scheme can be deployed in VANETs to provide robust security at low overheads.
基金supported in part by the National Natural Science Foundations of CHINA(Grant No.61771392,No.61771390,No.61871322 and No.61501373)Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China(Grant No.201955053002 and No.20185553035)。
文摘In this paper,we propose a Multi-token Sector Antenna Neighbor Discovery(M-SAND)protocol to enhance the efficiency of neighbor discovery in asynchronous directional ad hoc networks.The central concept of our work involves maintaining multiple tokens across the network.To prevent mutual interference among multi-token holders,we introduce the time and space non-interference theorems.Furthermore,we propose a master-slave strategy between tokens.When the master token holder(MTH)performs the neighbor discovery,it decides which 1-hop neighbor is the next MTH and which 2-hop neighbors can be the new slave token holders(STHs).Using this approach,the MTH and multiple STHs can simultaneously discover their neighbors without causing interference with each other.Building on this foundation,we provide a comprehensive procedure for the M-SAND protocol.We also conduct theoretical analyses on the maximum number of STHs and the lower bound of multi-token generation probability.Finally,simulation results demonstrate the time efficiency of the M-SAND protocol.When compared to the QSAND protocol,which uses only one token,the total neighbor discovery time is reduced by 28% when 6beams and 112 nodes are employed.
基金supported by the National Natural Science Foundation of China(62231020)the Youth Innovation Team of Shaanxi Universities。
文摘The foundation of ad hoc networks lies in the guarantee of continuous connectivity.However,critical nodes,whose failure can easily destroy network connectivity,will influence the ad hoc network connectivity significantly.To protect the network efficiently,critical nodes should be identified accurately and rapidly.Unlike existing critical node identification methods for unknown topology that identify critical nodes according to historical information,this paper develops a critical node identification method to relax the prior topology information condition about critical nodes.Specifically,we first deduce a theorem about the minimum communication range for a node through the number of nodes and deployment ranges,and prove the universality of the theorem in a realistic two-dimensional scenario.After that,we analyze the relationship between communication range and degree value for each node and prove that the greater number of nodes within the communication range of a node,the greater degree value of nodes with high probability.Moreover,we develop a novel strategy to improve the accuracy of critical node identification without topology information.Finally,simulation results indicate the proposed strategy can achieve high accuracy and low redundancy while ensuring low time consumption in the scenarios with unknown topology information in ad hoc networks.
文摘Vehicle Ad hoc Networks(VANETs)have high mobility and a rando-mized connection structure,resulting in extremely dynamic behavior.Several challenges,such as frequent connection failures,sustainability,multi-hop data transfer,and data loss,affect the effectiveness of Transmission Control Protocols(TCP)on such wireless ad hoc networks.To avoid the problem,in this paper,mobility-aware zone-based routing in VANET is proposed.To achieve this con-cept,in this paper hybrid optimization algorithm is presented.The hybrid algo-rithm is a combination of Ant colony optimization(ACO)and artificial bee colony optimization(ABC).The proposed hybrid algorithm is designed for the routing process which is transmitting the information from one place to another.The optimal routing process is used to avoid traffic and link failure.Thefitness function is designed based on Link stability and Residual energy.The validation of the proposed algorithm takes solution encoding,fitness calculation,and updat-ing functions.To perform simulation experiments,NS2 simulator software is used.The performance of the proposed approach is analyzed based on different metrics namely,delivery ratio,delay time,throughput,and overhead.The effec-tiveness of the proposed method compared with different algorithms.Compared to other existing VANET algorithms,the hybrid algorithm has proven to be very efficient in terms of packet delivery ratio and delay.
基金The Natural Science Foundation of Zhejiang Province(No.Y1090232)
文摘To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.
基金supported by National Science Fund for Distinguished Young Scholars (No.60525110)National 973 Program (No. 2007CB307100, 2007CB307103)+2 种基金National Natural Science Foundation of China (No. 60902051)Chinese Universities Scientific Fund (BUP-T2009RC0505)Development Fund Project for Electronic and Information Industry (Mobile Service and Application System Based on 3G)
文摘In this paper we analyze connectivity of one-dimensional Vehicular Ad Hoc Networks where vehicle gap distribution can be approximat- ed by an exponential distribution. The probabilities of Vehicular Ad Hoc Network connectivity for difference cases are derived. Furthermore we proof that the nodes in a sub-interval [z1, z1 + △z] of interval [0,z],z 〉 0 where all the nodes are independently uniform distributed is a Poisson process and the relationship of Vehicle Ad hoc Networks and one-dimensional Ad Hoc networks where nodes independently uniform distributed in [zl, z1 + △z] is explained. The analysis is validated by computing the probability of network connectivity and comparing it with the Mont Carlo simu- lation results.
基金The National Basic Research Program of China(973 Program)(No.2009CB320501)the National Natural Science Foundation of China(No.61370209,61272532)the Natural Science Foundation of Jiangsu Province(No.BK2010414,BK2011335)
文摘In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random geometrics. Through mathematical proof the optimal number of relay nodes and the optimal location of each node for data transmission can be obtained when a distance is given.In the ADPC first the source node computes the optimal number and the sites of the relay nodes between the source and the destination nodes.Then it searches feasible relay nodes around the optimal virtual relay-sites and selects one link with the minimal total transmission energy consumption for data transmission.Simulation results show that the ADPC can reduce both the energy dissipation and the end-to-end latency of the transmission.
基金The National Natural Science Foundation of China(No60362001)
文摘An improved internetworking approach is proposed to enhance the Internet connectivity which is deteriorated due to unidirectional links and blind rebroadcasting of gateway discovery packets for mobile ad hoc networks. The hybrid gateway discovery scheme that combined the advantages of a proactive and reactive gateway discovery approach is used to achieve high connectivity while keeping overhead costs low. By exchanging ad hoc on-demand distance vector (AODV) hello packet which includes additional fields named symmetric neighbor list and asymmetric neighbor list, unidirectional links are removed from route computation and broadcast storm can also be relieved simultaneously. Performance results using ns-2 simulations, under varying numbers of unidirectional links and node speeds, show that this improved Internet connectivity approach can provide better performance than others.
文摘Vehicular Ad hoc Networks(VANETs)become a very crucial addition in the Intelligent Transportation System(ITS).It is challenging for a VANET system to provide security services and parallelly maintain high throughput by utilizing limited resources.To overcome these challenges,we propose a blockchain-based Secured Cluster-based MAC(SCB-MAC)protocol.The nearby vehicles heading towards the same direction will form a cluster and each of the clusters has its blockchain to store and distribute the safety messages.The message which contains emergency information and requires Strict Delay Requirement(SDR)for transmission are called safety messages(SM).Cluster Members(CMs)sign SMs with their private keys while sending them to the blockchain to confirm authentication,integrity,and confidentiality of the message.A Certificate Authority(CA)is responsible for physical verification,key generation,and privacy preservation of the vehicles.We implemented a test scenario as proof of concept and tested the safety message transmission(SMT)protocol in a real-world platform.Computational and storage overhead analysis shows that the proposed protocol for SMT implements security,authentication,integrity,robustness,non-repudiation,etc.while maintaining the SDR.Messages that are less important compared to the SMs are called non-safety messages(NSM)and vehicles use RTS/CTS mechanism for NSM transmission.Numerical studies show that the proposed NSM transmission method maintains 6 times more throughput,2 times less delay and 125%less Packet Dropping Rate(PDR)than traditional MAC protocols.These results prove that the proposed protocol outperforms the traditional MAC protocols.
基金the National High Technology Development "863" Program of China (2006AA01Z436, 2007AA01Z452)the National Natural Science Foundation of China(60702042).
文摘Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.
基金Supported by the National Natural Science Funda-tion of China (60403027)
文摘In traditional networks , the authentication is performed by certificate authoritys(CA),which can't be built in distributed mobile Ad Hoc Networks however. In this pa per, we propose a fully self-organized public key management based on bidirectional trust model without any centralized authority that allows users to generate their public-private key pairs, to issue certificates, and the trust relation spreads rationally according to the truly human relations. In contrast with the traditional self-organized public-key management, the average certificates paths get more short, the authentication passing rate gets more high and the most important is that the bidirectional trust based model satisfys the trust re quirement of hosts better.
文摘In this paper, the security technology of ad hoc networks is studied.To improve the previous multi-receiver signcryption schemes, an ID-based multi-message and multi-receiver signcryption scheme for rekeying in ad hoc networks is proposed.In this scheme, a sender can simultaneously signcrypt n messeges for n receivers, and a receiver can unsigncrypt the ciphertext to get his message with his own private key.An analysis of this scheme indicates that it achieves authenticity and confidentiality in the random oracle model while being of lower computation and communication overhead.Finally, for the application of our scheme in ad hoc, a threshold key updating protocol for ad hoc networks is given.
基金the Iran Telecommunication Research Center (ITRC)
文摘Currently, there is a growing belief that putting an IEEE 802.11-like radio into road vehicles can help the drivers to travel more safely. Message dissemination protocols are primordial for safety vehicular applications. There are two types of safety messages which may be exchanged between vehicles: alarm and beacon. In this paper we investigate the feasibility of deploying safety applications based on beacon message dissemination through extensive simulation study and pay special attention to the safety requirements. Vehicles are supposed to issue these messages periodically to announce to other vehicles their current situation and use received messages for preventing possible unsafe situations. We evaluate the performance of a single-hop dissemination protocol while taking into account the quality of service (QoS) metrics like delivery rate and delay. We realize that reliability is the main concern in beacon message dissemination. Thus, a new metric named effective range is defined which gives us more accurate facility for evaluating QoS in safety applications specifically. Then, in order to improve the performance, the effects of three parameters including vehicle's transmission range, message transmission's interval time and message payload size are studied. Due to special characteristics of the safety applications, we model the relationship between communication-level QoS and application-level QoS and evaluate them for different classes of safety applications. As a conclusion, the current technology of IEEE 802.11 MAC layer has still some challenges for automatic safety applications but it can provide acceptable QoS to driver assistance safety applications.
基金This work is supported in part by the National Natural Science Foundation of China under Grant No.61931011in part by the National Key Research and Development Project of China under Grant No.2018YFB1800801+2 种基金in part by the Primary Research&Development plan of Jiangsu Province under Grant BE2021013-4in part by the National Natural Science Foundation of China under Grants No.61827801 and 61631020the China Scholarship Council(CSC)Grant 202006830072.
文摘The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly focuses on the adaptive routing protocol and proposes a Three Dimensional Q-Learning(3DQ)based routing protocol to guarantee the packet delivery ratio and improve the QoS.In 3DQ routing,we propose a Q-Learning based routing decision scheme,which contains a link-state prediction module and routing decision module.The link-state prediction module allows each Unmanned Aerial Vehicle(UAV)to predict the link-state of Neighboring UAVs(NUs),considering their Three Dimensional mobility and packet arrival.Then,UAV can produce routing decisions with the help of the routing decision module considering the link-state.We evaluate the various performance of 3DQ routing,and simulation results demonstrate that 3DQ can improve packet delivery ratio,goodput and delay of baseline protocol at most 71.36%,89.32%and 83.54%in FANETs over a variety of communication scenarios.
文摘In wireless ad hoe network environments, every link is wireless and every node is mobile. Those features make data lost easily as well as multicasting inefficient and unreliable. Moreover, Efficient and reliable multicast in wireless ad hoe network is a difficult issue. It is a major challenge to transmission delays and packet losses due to link changes of a multicast tree at the provision of high delivery ratio for each packet transmission in wireless ad hoe network environment. In this paler, we propose and evaluate Reliable Adaptive Multicast Protocol (RAMP) based on a relay node concept. Relay nodes are placed along the multieast tree. Data recovery is done between relay nodes. RAMP supports a reliable multicasting suitable for mobile ad hoe network by reducing the number of packet retransmissions. We compare RAMP with SRM (Scalable Reliable Multicast). Simulation results show that the RAMP has high delivery ratio and low end-to-end delay for packet transmsission.
基金This Paper is supported by the National Natural Science Foundation of China(Grants Nos.61761035,41761086,61461037,61661041).
文摘In recent years,with the rapid development of the Internet and wireless communication technology,wireless Ad hoc networks have received more attention.Due to the limited transmission range and energy of nodes in Ad hoc networks,it is important to establish a reliable and energy-balanced transmission path in Ad hoc networks.This paper proposes an energy-based dynamic routing protocol based on the existing AODV routing protocol,which has the following two aspects of improvement:(1)In the route discovery process,a node selects a suitable route from the minimum energy consumption route and the energy-balanced route designed in this paper according to a“Mark”bit that representing remaining energy of a node.(2)Based on(1),a route interruption update strategy was proposed to restart the route discovery process when node energy was used excessively.Simulation results demonstrate that compared with AODV and other existing routing protocols,proposed algorithm can reduce network energy consumption and balance node energy,thus extending the network lifetime.
文摘As a new sort of mobile ad hoc network(MANET), aeronautical ad hoc network(AANET) has fleet-moving airborne nodes(ANs) and suffers from frequent network partitioning due to the rapid-changing topology. In this work, the additional relay nodes(RNs) is employed to repair the network and maintain connectivity in AANET. As ANs move, RNs need to move as well in order to re-establish the topology as quickly as possible. The network model and problem definition are firstly given, and then an online approach for RNs' movement control is presented to make ANs achieve certain connectivity requirement during run time. By defining the minimum cost feasible moving matrix(MCFM), a fast algorithm is proposed for RNs' movement control problem. Simulations demonstrate that the proposed algorithm outperforms other control approaches in the highly-dynamic environment and is of great potential to be applied in AANET.
文摘In this paper, based on the inherent characteristic of the contention relation between flows in ad hoc networks, we introduce the notion of the link's interference set, extend the utility maximization problem representing congestion control in wireline networks to ad hoc networks, apply the penalty function approach and the subgradient method to solve this problem, and propose the congestion control algorithm Penalty function-based Optical Congestion Control (POCC) which is implemented in NS2- simulator. Specifically, each link transmits periodically the information on its congestion state to its interference set; the set ; the sermon at each source adjusts the transmission rate based on the optimal tradeoffbetween the utility value and the congestion level which the interference set of the links that this session goes though suffers from. MATLAB-based simulation results showed that POCC can approach the globally optimal solution. The NS2-based simulation results showed that POCC outperforms default TCP and ATCP to achieve efficient and fair resource allocation in ad hoc networks.
文摘A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.