The trajectory optimization of an unpowered reentry vehicle via artificial emotion memory optimization(AEMO)is discussed.Firstly,reentry dynamics are established based on multiple constraints and parameterized control...The trajectory optimization of an unpowered reentry vehicle via artificial emotion memory optimization(AEMO)is discussed.Firstly,reentry dynamics are established based on multiple constraints and parameterized control variables with finite dimensions are designed.If the constraint is not satisfied,a distance measure and an adaptive penalty function are used to address this scenario.Secondly,AEMO is introduced to solve the trajectory optimization problem.Based on the theories of biology and cognition,the trial solutions based on emotional memory are established.Three search strategies are designed for realizing the random search of trial solutions and for avoiding becoming trapped in a local minimum.The states of the trial solutions are determined according to the rules of memory enhancement and forgetting.As the iterations proceed,the trial solutions with poor quality will gradually be forgotten.Therefore,the number of trial solutions is decreased,and the convergence of the algorithm is accelerated.Finally,a numerical simulation is conducted,and the results demonstrate that the path and terminal constraints are satisfied and the method can realize satisfactory performance.展开更多
The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tu...The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is proposed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the "excellent" infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Finally, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.展开更多
基金supported by the Defense Science and Technology Key Laboratory Fund of Luoyang Electro-optical Equipment Institute,Aviation Industry Corporation of China(6142504200108).
文摘The trajectory optimization of an unpowered reentry vehicle via artificial emotion memory optimization(AEMO)is discussed.Firstly,reentry dynamics are established based on multiple constraints and parameterized control variables with finite dimensions are designed.If the constraint is not satisfied,a distance measure and an adaptive penalty function are used to address this scenario.Secondly,AEMO is introduced to solve the trajectory optimization problem.Based on the theories of biology and cognition,the trial solutions based on emotional memory are established.Three search strategies are designed for realizing the random search of trial solutions and for avoiding becoming trapped in a local minimum.The states of the trial solutions are determined according to the rules of memory enhancement and forgetting.As the iterations proceed,the trial solutions with poor quality will gradually be forgotten.Therefore,the number of trial solutions is decreased,and the convergence of the algorithm is accelerated.Finally,a numerical simulation is conducted,and the results demonstrate that the path and terminal constraints are satisfied and the method can realize satisfactory performance.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(Key Program:U1162202),the National Natural Science Foundation of China(61174118)+2 种基金the National High-Tech Research and Development Program of China(2012AA040307)Shanghai Key Technologies R&D program(12dz1125100)Shanghai Leading Academic Discipline Project(B504)
文摘The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is proposed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the "excellent" infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Finally, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.