The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand b...The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.展开更多
Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the tougheni...Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the toughening effect of fibers is analyzed,their influence on the slurry conveying performance should also be considered.Additionally,cement affects the interactions among the hydration products,fibers,and aggregates.In this study,the effects of cement content(8wt%,9wt%,and 10wt%)and PP fiber length(6,9,and 12 mm)and dosage(0.05wt%,0.1wt%,0.15wt%,0.2wt%,and 0.25wt%)on fluidity and mechanical properties of the fibertoughened CASB(FCASB)were analyzed.The results indicated that with increases in the three aforementioned factors,the slump flow decreased,while the rheological parameters increased.Uniaxial compressive strength(UCS)increased with the increase of cement content and fiber length,and with an increase in fiber dosage,it first increased and then decreased.The strain increased with the increase of fiber dosage and length.The effect of PP fibers became more pronounced with the increase of cement content.Digital image correlation(DIC)test results showed that the addition of fibers can restrain the peeling of blocks and the expansion of fissure,and reduce the stress concentration of the FCASB.Scanning electron microscopy(SEM)test indicated that the functional mechanisms of fibers mainly involved the interactions of fibers with the hydration products and matrix and the spatial distribution of fibers.On the basis of single-factor analysis,the response surface method(RSM)was used to analyze the effects of the three aforementioned factors and their interaction terms on the UCS.The influence surface of the two-factor interaction terms and the three-dimensional scatter plot of the three-factor coupling were established.In conclusion,the response law of the FCASB properties under the effects of cement and PP fibers were obtained,which provides theoretical and engineering guidance for FCASB filling.展开更多
The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cement...The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cemented AS backfill(CASB),the response surface method(RSM)was adopted in this study to analyze the influence of ordinary Portland cement(PO)content(x_(1)),fly ash(FA)-AS(FA-AS)ratio(x_(2)),and concentration(x_(3))on the mechanical and microscopic properties of the CASB.The hydration characteristics and internal pore structure of the backfill were assessed through thermogravimetric/derivative thermogravimetric analysis,mercury intrusion porosimetry,and scanning electron microscopy.The RSM results show that the influence of each factor and interaction term on the response values is extremely significant(except x_(1)x_(3),which had no obvious effect on the 28 d strength).The uniaxial compressive strength(UCS)increased with the PO content,FA-AS ratio,and concentration.The interaction effects of x_(1)x_(2),x_(1)x_(3),and x_(2)x_(3) on the UCS at 3,7,and 28 d were analyzed.In terms of the influence of interaction items,an improvement in one factor promoted the strengthening effect of another factor.The enhancement mechanism of the curing time,PO content,and FA-AS ratio on the backfill was reflected in the increase in hydration products and pore structure optimization.By contrast,the enhancement mechanism of the concentration was mainly the pore structure optimization.The UCS was positively correlated with weight loss and micropore content but negatively correlated with the total porosity.The R^(2) value of the fitting function of the strength and weight loss,micropore content,and total porosity exceeded 0.9,which improved the characterization of the enhancement mechanism of the UCS based on the thermogravimetric analysis and pore structure.This work obtained that the influence rules and mechanisms of the PO,FA-AS,concentration,and interaction terms on the mechanical properties of the CASB provided a certain theoretical and engineering guidance for CASB filling.展开更多
The mineral dust emitted from Central Asia has a significant influence on the global climate system.However,the history and mechanisms of aeolian activity in Central Asia remain unclear,due to the lack of well-dated r...The mineral dust emitted from Central Asia has a significant influence on the global climate system.However,the history and mechanisms of aeolian activity in Central Asia remain unclear,due to the lack of well-dated records of aeolian activity and the intense wind erosion in some of the dust source areas(e.g.,deserts).Here,we present the records of aeolian activity from a sedimentary sequence in the southern Gurbantunggut Desert of China using grain size analysis and optically stimulated luminescence(OSL)dating,based on field sampling in 2019.Specifically,we used eight OSL dates to construct chronological frameworks and applied the end-member(EM)analysis for the grain size data to extract the information of aeolian activity in the southern Gurbantunggut Desert during the last 900 a.The results show that the grain size dataset can be subdivided into three EMs(EM1,EM2,and EM3).The primary modal sizes of these EMs(EM1,EM2,and EM3)are 126.00,178.00,and 283.00μm,respectively.EM1 represents a mixture of the suspension components and saltation dust,while EM2 and EM3 show saltation dust transported over a shorter distance via strengthened near-surface winds,which can be used to trace aeolian activity.Combined with the OSL chronology,our results demonstrate that during the last 900 a,more intensive and frequent aeolian activity occurred during 450-100 a BP(Before Present)(i.e.,the Little Ice Age(LIA)),which was reflected by a higher proportion of the coarse-grained components(EM2+EM3).Aeolian activity decreased during 900-450 a BP(i.e.,the Medieval Warm Period(MWP))and 100 a BP-present(i.e.,the Current Warm Period(CWP)).Intensified aeolian activity was associated with the strengthening of the Siberian High and cooling events at high northern latitudes.We propose that the Siberian High,under the influence of temperature changes at high northern latitudes,controlled the frequency and intensity of aeolian activity in Central Asia.Cooling at high northern latitudes would have significantly enhanced the Siberian High,causing its position to shift southward.Subsequently,the incursion of cold air masses from high northern latitudes resulted in stronger wind regimes and increased dust emissions from the southern Gurbantunggut Desert.It is possible that aeolian activity may be weakened in Central Asia under future global warming scenarios,but the impact of human activities on this region must also be considered.展开更多
In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as...In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as micro morphology and phase composition of magnesium oxychloride cement(MOC)was studied.The experimental results indicate that,with the increase of content of doping sand,the compressive strength and flexural strength of MOC decrease significantly.However,when the quality ratio of aeolian sand and light burned magnesia powder is 1:8,the performance meets the actual engineering needs.Namely,the compressive strength of MOC is not less than 18 MPa,and flexural strength is not less than 4 MPa.Meanwhile,within 12 months of age,the compressive strength and flexural strength are stable.There is no obvious change in phase composition,and its main phase is still 5·1·8 phase.Microscopic appearance changes from needle-like to gel-like shape.Based on engineering applications,it is found that when the novel sand-fixing material is used in the field for one year,its macroscopic feature is not damaged,compressive strength and flexural strength are also more stable,phase composition negligibly changes,and micro morphology has also been turned into be gellike shape.These further confirm the long-term stability and weather resistance of MOC doping aeolian sand,providing theoretical and technical support for the widely application of MOC in the field of sand fixation in the future.展开更多
The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the ...The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.展开更多
The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten fo...The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten formula and the parameters that characterized the prosperities of aeolian sand such as the unsaturated infiltration coefficient and specific water capacity were obtained.The results showed that the water characteristic curve for aeolian sand in wetting process had greater hysteresis quality than ...展开更多
The spatial and temporal changes in aeolian transport over a dune are fundamental factors that control the morphology of the dune. In the present study, we obtained direct field observations of aeolian transport over ...The spatial and temporal changes in aeolian transport over a dune are fundamental factors that control the morphology of the dune. In the present study, we obtained direct field observations of aeolian transport over a developing transverse dune at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert. The transport rate versus wind speed relationship relationships over flat surfaces and over dunes that are s complicated over a developing dune compared with the n equilibrium with the wind. We obtained trend lines for transport rate over the transverse dune versus distance. The transport rate generally increased from the toe to the crest above the stoss slope, but the difference in transport rate between the crest and the toe was smaller than those that have been proposed for taller dunes. The crest/toe ratio for transport rates therefore seems to depend greatly on dune height. Flux density profiles for different points above the dune at different wind speeds were well described by the exponential decay law, as has been proposed for saltation flux density profiles. Coefficients in the flux density profile function can be defined in terms of the transport rate and wind speed. However, the dependence of relative decay rate with height and average saltation height on wind speed was weaker than that observed in a wind tunnel and above a fiat surface. The preliminary results obtained in this study require more evidence from field observations to fully describe aeolian transport above developing dunes.展开更多
The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and thei...The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and their grain size, surface textural features and several main chemical elements have been analyzed. The results showed that: 1) Some of the aeolian structural characteristics of these dune sands are similar to that of the recent dune sands. 2) They are also similar to the recent dune sands in grain size components, and parameters of Mz,σ, Sk and Kg, as well as in several main chemical components. 3) The scattergrams of Mz-σ and SiO2-Al2O3+TOFE and the probability curves of grain size showed that these paleo-dune sands are different from paleosols and fluvio-lacustrine facies, but are consistency with recent dune sands. 4) Quartz sands have well roundness and surface textural features such as dish-shaped pits, crescent-shaped pits, pockmarked pits, upturned cleavage plates, siliceous precipitates and siliceous crevasses, indicating that they had been carried for a long time by the wind. As the 11 layers of paleo-dune sands possess the aeolian characteristics in structure, grain size, surface textural features and chemical elements, the origin of their formation should be attributed to eolation.展开更多
In recent years,the desertification of alpine meadows has become a serious ecological problem and has gradually become a threat to regional economic activities in Maqu County.To reveal the mechanism for sandy desertif...In recent years,the desertification of alpine meadows has become a serious ecological problem and has gradually become a threat to regional economic activities in Maqu County.To reveal the mechanism for sandy desertification of alpine meadows,we conducted wind tunnel experiments on aeolian processes over sandy alpine meadows.Results show that the sandflux profile of mix-sized sediment decays exponentially with increasing height.However,the profile pattern of a group of uniform-sized particles depends on the experimental wind speeds.The profile pattern of all the groups studied can be expressed by exponential decay functions when the wind speed is less than or equal to 16 m/s.while that for all the groups studied can be expressed by a Gaussian distribution function when the wind speed is above 16 m/s.The average saltation heights of mixed sands at wind speeds of 12 m/s,16 m/s,20 m/s,and 24 m/s were 2.74,4.19,5.28,and 6.12 cm,respectively.The mean grain size basically first decreases and then increases with increasing height under different wind speeds.The sorting improves with increasing wind speed,while the kurtosis and skewness show relationships with only the characteristics of the parent soil.展开更多
Tafoni occur generally in granular rocks around the world, but their origin remains controversial. In this study,the roles of lithology, micro–climate, and organism in tafoni development are investigated in the Danxi...Tafoni occur generally in granular rocks around the world, but their origin remains controversial. In this study,the roles of lithology, micro–climate, and organism in tafoni development are investigated in the Danxiashan UNESCO Global Geopark of South China. The Jinshiyan Temple and Luyitang sites along the Jinjiang River are chosen to conduct tafoni morphometry, bedrock petrography, and micro–climate analyses. The research methods used in this study include field observations and measurements, Voronoi diagrams, polarizing microscopic and scanning electron microscopic(SEM)image analysis, and meteorological detection. The tafoni are mostly 2–10 cm in length and elliptical in shape. The Late Cretaceous Jinshiyan sandstones are characterized by a grain–to–grain contact fabric and moderate sorting with a high proportion of soluble grains and cements. The Voronoi diagrams developed through the Arc GIS software are largely consistent with the tafoni openings. Moreover, owing to exposure to solar insolation, the external temperature values are higher than the internal ones, while the external relative humidity values are lower than the internal ones. Therefore, the permeable Jinshiyan sandstones are fundamental for tafoni development, while the abundant moisture from the Jinjiang River and frequent rains is favorable for salt weathering in tandem with biological activities. At last, a five–stage development model is proposed for the tafoni progression in the study area.展开更多
Identifying the provenance of aeolian sediments in the Hunshandake Sandy Land is of great importance for understanding the formation of the dune fields in the mid-latitudes and for deciphering information about desert...Identifying the provenance of aeolian sediments in the Hunshandake Sandy Land is of great importance for understanding the formation of the dune fields in the mid-latitudes and for deciphering information about desert's responses to global change. By determining the major and trace elements concentrations of aeolian sands in three grain size fractions from the central and western parts of the Hunshandake Sandy Land, we systematically study the provenance and the depositional history of aeolian sands in this desert environment. Our results show that aeolian sands from the Hunshandake Sandy Land are enriched in SiO2 and are depleted in many other elements compared to those of the Upper Continent Crust (UCC). Variations of the immobile elements ratios like Zr/Hf, La/Yb, Th/Nb, La/Nb, LaN/YbN, GdN/YbN are relatively large in the coarse and medium fractions but minor in the fine fractions. Eu anomalies are quite different in the coarse fractions, but mostly positive in the medium fractions and all negative in the fine fractions. Decreasing tendency of Zr concentrations from the west to the east in the Hunshandake Sandy Land is evident in the coarse sands but rather weak in the fine grain size fractions. Our geochemical data indicate that the sources for the coarse and medium fractions of aeolian sands are diverse, influenced by local geology and geomorphology, while the fine sand fractions are more homogenous due to intensive mixture mainly by aeolian processes. Various ratios of immobile elements suggest that these sands should be sourced primarily from the surrounding mountains by fluvial/alluvial processes rather than from any remote territories. Aeolian sands with Ce negative anomalies are widely distributed in the Hunshandake Sandy Land, indicating that aquatic environments have occurred extensively prior to the occurrence of the dune field.展开更多
The Ulanbuh Desert borders the upper reach of the Yellow River. Every year, a mass of aeolian sand is blown into the Yellow River by the prevailing wind and the coarse aeolian sand results in serious silting in the Ye...The Ulanbuh Desert borders the upper reach of the Yellow River. Every year, a mass of aeolian sand is blown into the Yellow River by the prevailing wind and the coarse aeolian sand results in serious silting in the Yellow River. To estimate the quantity of aeolian sediments from the Ulanbuh Desert blown into the Yellow River, we simulated the saltation processes of aeolian sediments in the Ulanbuh Desert. Then we used a saltation submodel of the IWEMS (integrated Wind-Erosion Modeling System) and its accompanying RS (Remote Sensing) and GIS (Geographic Information System) modules to estimate the quantity of saltation sediments blown into the Yellow River from the Ulanbuh Desert. We calibrated the saltation submodel by the synchronous observation to wind ve- locity and saltation sediments on several points with different vegetation cover. The vegetation cover, frontal area of vegetation, roughness length, and threshold friction velocity in various regions of the Ulanbuh Desert were obtained using NDVI (Normalized Difference Vegetation Index) data, measured sand-particle sizes, and empirical relation- ships among vegetation cover, sand-particle diameters, and wind velocity. Using these variables along with the observed wind velocities and saltation sediments for the observed points, the saltation model was validated. The model results were shown to be satisfactory (RMSE less than 0.05 and IRel less than 17%). In this study, a subdaily wind-velocity program, WlNDGEN, was developed using this model to simulate hourly wind velocities around the Ulanbuh Desert. By incorporating simulated hourly wind-velocity and wind-direction data, the quantity of saltation sediments blown into the Yellow River was calculated with the saltation submodel. The annual quantity of aeolian sediments blown into the Yellow River from the Ulanbuh Desert was 5.56x106 t from 2001 to 2010, most of which occurred in spring (from March to May); for example, 6.54x10~ tons of aeolian sand were blown into the Yellow River on 25 April, 2010. However, in summer and winter, the saltation process occasionally occurred. This research has supplied some references to prevent blown sand hazards and silting in the Yellow River.展开更多
Aeolian sand landforms in the Yarlung Zangbo River(YZR) valley are a special type of aeolian landform that has attracted the attention of many scholars. However, the spatial distribution as well as the formation mecha...Aeolian sand landforms in the Yarlung Zangbo River(YZR) valley are a special type of aeolian landform that has attracted the attention of many scholars. However, the spatial distribution as well as the formation mechanism of aeolian sand has rarely been reported with integrated studies. In this paper, for remote sensing interpretation, scanning electron microscopy(SEM), X-ray diffraction(XRD) and particle size distribution(PSD) methods were used to analyze the spatial distribution and the deposition characteristics of aeolian sand. Combined with wind data and topography, the main driving factors and the formation mechanism of aeolian sand landforms were also examined. In the middle reaches of the YZR valley, there is a total of 2324.43 km^2 of aeolian sand, especially on the north bank of the wide valleys. In different wide valleys, the aeolian sand landforms exhibit a decreasing trend from the upstream to the downstream regions in both the area and expansion rate of aeolian sand. The cyclonic vortexes generated by the westerly winds and glacial winds are the main driving factors for transporting alluvial sand to the riverbank areas to form aeolian dunes. There are three main types of sand dunes in the river valley: climbing dunes, lee dunes and circumfluent dunes. Climbing dunes and lee dunes are mostly located west of the Jiacha Gorge, and the circumfluent dunes are mostly located east of the Jiacha Gorge.展开更多
The northeastern Qinghai-Tibetan Plateau(QTP) of China is located at the triple junction of the Asian winter and summer monsoons and the westerlies, where paleoclimatic evolution has an important scientific significan...The northeastern Qinghai-Tibetan Plateau(QTP) of China is located at the triple junction of the Asian winter and summer monsoons and the westerlies, where paleoclimatic evolution has an important scientific significance for recognizing the spatial-temporal pattern of Asian monsoons in the past and predicting environmental change in the future. Nevertheless, the framework of the Holocene moisture variation and related mechanisms remain controversial, owing to complex hydroclimatic conditions triggered by the landform of the large mountain-arid basin. Here, we employed geochemical proxies from typical aeolian sand-palaeosol sequences in the Gonghe Basin, northeastern QTP, together with Optically Stimulated Luminescence(OSL) dating, to reconstruct the pattern of effective moisture variation and associated mechanisms in this region. Our results indicate that the regional effective moisture was at its lowest until 9–8 ka, and approached a maximum during 8–4/3 ka of the middle Holocene. Afterwards, the climate became relatively dry in general, but with a transient humid interval around 2–1 ka. Our geochemical evidence indicates that the dry early Holocene probably can be attributed to a strong winter monsoon forced by remnant ice sheet, combined with the high evaporation caused by solar insolation. Also, shifts of humid-dry are closely linked to the Asian summer monsoonal strength and therefore the balance of evaporation-precipitation in the middle and late Holocene. Thus, the pattern of the Holocene effective moisture variation is characterized as the ‘monsoon model’ in a closed intermontane arid and semi-arid basin near the western Asian monsoonal limit.展开更多
Mu Us Desert, a region with high aeolian activity, is at extremely high risk of sandy desertification. Using surface soil samples collected from Mu Us Desert of northern China, we evaluated the effects of aeolian proc...Mu Us Desert, a region with high aeolian activity, is at extremely high risk of sandy desertification. Using surface soil samples collected from Mu Us Desert of northern China, we evaluated the effects of aeolian processes on nutrient loss from surface soils by employing wind tunnel experiments. The experiments were conducted using free-stream wind velocities of 14, 16, 18 and 22 m/s. Our results showed that the fine particles (〈50 pm in diameter; 12.28% of all transported materials) carrying large nutrient Ioadings were exported outside the study area by ae- olian processes. After the erodible fine particles were transported away from the soil surfaces at low wind velocity (i.e. 14 m/s), the following relatively high wind velocity (i.e. 22 m/s) did not have any significant effect on nutrient export, because the coefficients of variation for soil organic matter, total phosphorus, total nitrogen and available potassium were usually 〈5%. Our experimental results confirmed that aeolian processes result in a large amount of nutrient export, and consequently increase the risk of sandy desertification in arid and semi-arid ecosystems.展开更多
The 'Old Red Sand' is a type of semicemented medium-fine sandy sediment that is red(10R_4/8) or brown red(2.5YR_4/8) in colour and is found in late Quaternary deposits. The sediments have distinctive character...The 'Old Red Sand' is a type of semicemented medium-fine sandy sediment that is red(10R_4/8) or brown red(2.5YR_4/8) in colour and is found in late Quaternary deposits. The sediments have distinctive characteristics and are a critical archive for understanding climatic changes in the coastal areas of East Asia. The ages of the late Quaternary aeolian sand dunes from Haitan Island in the coastal area of South China are still in debate. In this study, three sets of marine terraces were identified in the northern region of Haitan Island. Aeolian dune sands are well preserved on the top of these terraces. Quartz Optically Stimulated Luminescence dating and the distribution of the formation ages demonstrated that the palaeo-dunes are deposits from the middle-late period of the Late Pleistocene(Q_3^(2-3)). The period may be divided into three stages, 100-90 ka, 70-60 ka, and 40-20 ka, in which the palaeo-dunes of the first two stages are more widespread and were formed separately during a low-sea level period of the Marine Isotope Stages 5 b and 4. Several depositional palaeo-flood event records were preserved during the last stage due to the increasing gradient of mountain gullies formed during the Last Glacial Maximum.展开更多
Coastal dunes are a common geomorphic type in sandy coastal zones.They are a record of the coupled evolutionary processes of the wind and ocean waves.Many coastal dune fields have developed on the east coast of Fujian...Coastal dunes are a common geomorphic type in sandy coastal zones.They are a record of the coupled evolutionary processes of the wind and ocean waves.Many coastal dune fields have developed on the east coast of Fujian China and now occur as widespread typical coastal aeolian sand landforms on the Liuao Peninsula,Gulei Peninsula and Dongshan Island,but it is difficult to evaluate the dynamic geomorphologic process of sandy coast due to the lack of systematic and accurate chronological data.In this study,we selected the Hutoushan(HTS)aeolian dune on the Liuao Peninsula as the research object.Optical dating and grain-size analysis were applied to sand samples from the aeolian sequence of a profile of the HTS dune.The results show that the ages of seven samples of this profile were in the range of 37.8–0.19 ka from 4.0 to 0.2 m deep.These correspond to the Marine Isotope Stage 3(MIS3),abrupt climatic change events of 4.2 and 1.1 ka and the Little Ice Age(LIA),respectively.These samples displayed evidence of a longer-term climate trend in this area.The period of formation of this coastal aeolian dune corresponds to a cold and arid climate associated with the East Asia Winter Monsoon(EAWM).Periods of dune fixation and rubification are evidence of a hot and humid climate.Mobilization and stabilization of the aeolian dune is an important characteristic of the coastal evolution in South China since the late Pleistocene.展开更多
Given the conflicts over the proposed formation mechanisms of Xiashu loess, the question of the provenance of sediments comprising the Xiashu loess in the Yangtze River Delta has not been satisfactorily resolved. In t...Given the conflicts over the proposed formation mechanisms of Xiashu loess, the question of the provenance of sediments comprising the Xiashu loess in the Yangtze River Delta has not been satisfactorily resolved. In this study, the provenance of aeolian sediments of the Yangtze River Delta, China was examined by applying the detrial zircon U–Pb dating technique, Sr–Nd isotopic and trace element compositional analysis. U-Pb dating analysis was conducted on the Xiashu loess at three locations over the Yangtze River Delta, including Huangnishan(HNS) hill, Shengshan(SS) island and the Xuancheng(XC) area. The Xiashu loess and the sediments of the Yangtze River Valley share considerable similarity in their zircon U-Pb age spectra with the same main age peak and comparable age distribution. By contrast, significant differences in the age spectra, existbetween the Xiashu loess and loess deposits of Chinese Loess Plateau(CLP). Coarse grains of the Yangtze River Delta loess may have a proximal material source identical to the sediments from the Yangtze River valley. Sr–Nd isotopic values of the Xiashu loess match those from the northern margin of the Tibetan Plateau. Rare earth element ratios independent of grain size illustrate that the values from loess of the Yangtze River Delta mostly overlap with those of CLP loess. This feature implies that loess from the Yangtze River Delta has a dominant source of distant material similar as the CLP loess. As such, we conclude that multi-proxy analysis of sediments can shed new light on tracing the provenance of aeolian loess in the Yangtze River Delta.展开更多
Aeolian desertification has rapidly developed in the past 50 years in Northern China,covered an area of 0.386 million km2 by 2000,affected nearly 170 million population,and caused the direct and indirect economic loss...Aeolian desertification has rapidly developed in the past 50 years in Northern China,covered an area of 0.386 million km2 by 2000,affected nearly 170 million population,and caused the direct and indirect economic loss of about $6.75(U.S.dollar) billion per year.Here we present several lines of evidence to demonstrate that human activities guided by policy shifts have been a major force to drive aeolian desertification via changes in land-use patterns and intensity.It is suggested that the desertification can be curbed or even reversed by adopting prevention and control measures with ecologically sound land-use practices in China.展开更多
基金the National Natural Science Foundation of China(42230720,32160410,42167069)the Gansu Key Research and Development Program(22YF7FA078,GZTZ20240415)Gansu Province Forestry and Grassland Science and Technology Innovation Project(LCCX202303).
文摘The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.
基金financially supported by the National Natural Science Foundation of China(No.52174095)the Top Innovative Talents Cultivation Fund for Doctoral Postgraduates(No.BBJ2023054).
文摘Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the toughening effect of fibers is analyzed,their influence on the slurry conveying performance should also be considered.Additionally,cement affects the interactions among the hydration products,fibers,and aggregates.In this study,the effects of cement content(8wt%,9wt%,and 10wt%)and PP fiber length(6,9,and 12 mm)and dosage(0.05wt%,0.1wt%,0.15wt%,0.2wt%,and 0.25wt%)on fluidity and mechanical properties of the fibertoughened CASB(FCASB)were analyzed.The results indicated that with increases in the three aforementioned factors,the slump flow decreased,while the rheological parameters increased.Uniaxial compressive strength(UCS)increased with the increase of cement content and fiber length,and with an increase in fiber dosage,it first increased and then decreased.The strain increased with the increase of fiber dosage and length.The effect of PP fibers became more pronounced with the increase of cement content.Digital image correlation(DIC)test results showed that the addition of fibers can restrain the peeling of blocks and the expansion of fissure,and reduce the stress concentration of the FCASB.Scanning electron microscopy(SEM)test indicated that the functional mechanisms of fibers mainly involved the interactions of fibers with the hydration products and matrix and the spatial distribution of fibers.On the basis of single-factor analysis,the response surface method(RSM)was used to analyze the effects of the three aforementioned factors and their interaction terms on the UCS.The influence surface of the two-factor interaction terms and the three-dimensional scatter plot of the three-factor coupling were established.In conclusion,the response law of the FCASB properties under the effects of cement and PP fibers were obtained,which provides theoretical and engineering guidance for FCASB filling.
基金financially supported by the National Natural Science Foundation of China (NO.52174095)。
文摘The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cemented AS backfill(CASB),the response surface method(RSM)was adopted in this study to analyze the influence of ordinary Portland cement(PO)content(x_(1)),fly ash(FA)-AS(FA-AS)ratio(x_(2)),and concentration(x_(3))on the mechanical and microscopic properties of the CASB.The hydration characteristics and internal pore structure of the backfill were assessed through thermogravimetric/derivative thermogravimetric analysis,mercury intrusion porosimetry,and scanning electron microscopy.The RSM results show that the influence of each factor and interaction term on the response values is extremely significant(except x_(1)x_(3),which had no obvious effect on the 28 d strength).The uniaxial compressive strength(UCS)increased with the PO content,FA-AS ratio,and concentration.The interaction effects of x_(1)x_(2),x_(1)x_(3),and x_(2)x_(3) on the UCS at 3,7,and 28 d were analyzed.In terms of the influence of interaction items,an improvement in one factor promoted the strengthening effect of another factor.The enhancement mechanism of the curing time,PO content,and FA-AS ratio on the backfill was reflected in the increase in hydration products and pore structure optimization.By contrast,the enhancement mechanism of the concentration was mainly the pore structure optimization.The UCS was positively correlated with weight loss and micropore content but negatively correlated with the total porosity.The R^(2) value of the fitting function of the strength and weight loss,micropore content,and total porosity exceeded 0.9,which improved the characterization of the enhancement mechanism of the UCS based on the thermogravimetric analysis and pore structure.This work obtained that the influence rules and mechanisms of the PO,FA-AS,concentration,and interaction terms on the mechanical properties of the CASB provided a certain theoretical and engineering guidance for CASB filling.
基金supported by the National Natural Science Foundation of China (42167063)the Open Fund of Key Laboratory for Digital Land and Resources of Jiangxi Province (DLLJ202113)+2 种基金the State Scientific Survey Project of China (2017FY101001)the Natural Science Foundation of Jiangxi Province (20202BABL213028)the Scientific Research Foundation of East China University of Technology (DHBK2019028)。
文摘The mineral dust emitted from Central Asia has a significant influence on the global climate system.However,the history and mechanisms of aeolian activity in Central Asia remain unclear,due to the lack of well-dated records of aeolian activity and the intense wind erosion in some of the dust source areas(e.g.,deserts).Here,we present the records of aeolian activity from a sedimentary sequence in the southern Gurbantunggut Desert of China using grain size analysis and optically stimulated luminescence(OSL)dating,based on field sampling in 2019.Specifically,we used eight OSL dates to construct chronological frameworks and applied the end-member(EM)analysis for the grain size data to extract the information of aeolian activity in the southern Gurbantunggut Desert during the last 900 a.The results show that the grain size dataset can be subdivided into three EMs(EM1,EM2,and EM3).The primary modal sizes of these EMs(EM1,EM2,and EM3)are 126.00,178.00,and 283.00μm,respectively.EM1 represents a mixture of the suspension components and saltation dust,while EM2 and EM3 show saltation dust transported over a shorter distance via strengthened near-surface winds,which can be used to trace aeolian activity.Combined with the OSL chronology,our results demonstrate that during the last 900 a,more intensive and frequent aeolian activity occurred during 450-100 a BP(Before Present)(i.e.,the Little Ice Age(LIA)),which was reflected by a higher proportion of the coarse-grained components(EM2+EM3).Aeolian activity decreased during 900-450 a BP(i.e.,the Medieval Warm Period(MWP))and 100 a BP-present(i.e.,the Current Warm Period(CWP)).Intensified aeolian activity was associated with the strengthening of the Siberian High and cooling events at high northern latitudes.We propose that the Siberian High,under the influence of temperature changes at high northern latitudes,controlled the frequency and intensity of aeolian activity in Central Asia.Cooling at high northern latitudes would have significantly enhanced the Siberian High,causing its position to shift southward.Subsequently,the incursion of cold air masses from high northern latitudes resulted in stronger wind regimes and increased dust emissions from the southern Gurbantunggut Desert.It is possible that aeolian activity may be weakened in Central Asia under future global warming scenarios,but the impact of human activities on this region must also be considered.
基金Funded by the Applied Basic Research in Qinghai Province(No.2021-ZJ-737)the Excellent Demonstration Courses for Graduate Students of Qinghai Minzu University(No.JK-2022-09)the Top Talents of‘Kunlun Talents High-end Innovation and Entrepreneurship Talents’of Qinghai Province。
文摘In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as micro morphology and phase composition of magnesium oxychloride cement(MOC)was studied.The experimental results indicate that,with the increase of content of doping sand,the compressive strength and flexural strength of MOC decrease significantly.However,when the quality ratio of aeolian sand and light burned magnesia powder is 1:8,the performance meets the actual engineering needs.Namely,the compressive strength of MOC is not less than 18 MPa,and flexural strength is not less than 4 MPa.Meanwhile,within 12 months of age,the compressive strength and flexural strength are stable.There is no obvious change in phase composition,and its main phase is still 5·1·8 phase.Microscopic appearance changes from needle-like to gel-like shape.Based on engineering applications,it is found that when the novel sand-fixing material is used in the field for one year,its macroscopic feature is not damaged,compressive strength and flexural strength are also more stable,phase composition negligibly changes,and micro morphology has also been turned into be gellike shape.These further confirm the long-term stability and weather resistance of MOC doping aeolian sand,providing theoretical and technical support for the widely application of MOC in the field of sand fixation in the future.
基金This research was supported by Key Knowledge Innova-tion Project (SCXZD0102) of Institute of Applied Ecology Chinese Academy of Sciences and sponsored by the Science and Technology Department of Inner Mongolia Autonomic Region,P. R. China (2001010)
文摘The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.
基金Supported by Key Project of Science and Technology Research of Ministry of Education(308021)Chang Jiang Scholars Innovation Team of Ministry of Education(IRT0811)Geological Survey Project of China Geological Survey(1212010331302)~~
文摘The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten formula and the parameters that characterized the prosperities of aeolian sand such as the unsaturated infiltration coefficient and specific water capacity were obtained.The results showed that the water characteristic curve for aeolian sand in wetting process had greater hysteresis quality than ...
基金funding from the National Natural Science Foundation of China (41130533, 41171010)
文摘The spatial and temporal changes in aeolian transport over a dune are fundamental factors that control the morphology of the dune. In the present study, we obtained direct field observations of aeolian transport over a developing transverse dune at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert. The transport rate versus wind speed relationship relationships over flat surfaces and over dunes that are s complicated over a developing dune compared with the n equilibrium with the wind. We obtained trend lines for transport rate over the transverse dune versus distance. The transport rate generally increased from the toe to the crest above the stoss slope, but the difference in transport rate between the crest and the toe was smaller than those that have been proposed for taller dunes. The crest/toe ratio for transport rates therefore seems to depend greatly on dune height. Flux density profiles for different points above the dune at different wind speeds were well described by the exponential decay law, as has been proposed for saltation flux density profiles. Coefficients in the flux density profile function can be defined in terms of the transport rate and wind speed. However, the dependence of relative decay rate with height and average saltation height on wind speed was weaker than that observed in a wind tunnel and above a fiat surface. The preliminary results obtained in this study require more evidence from field observations to fully describe aeolian transport above developing dunes.
基金National Basic Research Program of China, No.2004CB720206 National Natural Science Foundation of China, No.40772118+1 种基金 No.49971009 The RGC Grant of the HKSAR, No.HKU 7243/04H The authors appreciate Zhang Huanxin and Song Weijia, Sun Zhong and Wang Yuanping for their analyses of grain size, chemical elements and Surface texture characteristics of quartz sands. Gratitude is owed to Xiao Zhaodi and Zheng Jiefang for their valuable advice on translation.
文摘The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and their grain size, surface textural features and several main chemical elements have been analyzed. The results showed that: 1) Some of the aeolian structural characteristics of these dune sands are similar to that of the recent dune sands. 2) They are also similar to the recent dune sands in grain size components, and parameters of Mz,σ, Sk and Kg, as well as in several main chemical components. 3) The scattergrams of Mz-σ and SiO2-Al2O3+TOFE and the probability curves of grain size showed that these paleo-dune sands are different from paleosols and fluvio-lacustrine facies, but are consistency with recent dune sands. 4) Quartz sands have well roundness and surface textural features such as dish-shaped pits, crescent-shaped pits, pockmarked pits, upturned cleavage plates, siliceous precipitates and siliceous crevasses, indicating that they had been carried for a long time by the wind. As the 11 layers of paleo-dune sands possess the aeolian characteristics in structure, grain size, surface textural features and chemical elements, the origin of their formation should be attributed to eolation.
基金supported by the national key research and development project of China(Grant No.2017YFC0504801)the National Natural Sciences Foundation of China(Grant No.41871016)Opening Fund of Key Laboratory of Desert and Desertification,Chinese Academy of Sciences(Grant No.KLDD-2017-007)
文摘In recent years,the desertification of alpine meadows has become a serious ecological problem and has gradually become a threat to regional economic activities in Maqu County.To reveal the mechanism for sandy desertification of alpine meadows,we conducted wind tunnel experiments on aeolian processes over sandy alpine meadows.Results show that the sandflux profile of mix-sized sediment decays exponentially with increasing height.However,the profile pattern of a group of uniform-sized particles depends on the experimental wind speeds.The profile pattern of all the groups studied can be expressed by exponential decay functions when the wind speed is less than or equal to 16 m/s.while that for all the groups studied can be expressed by a Gaussian distribution function when the wind speed is above 16 m/s.The average saltation heights of mixed sands at wind speeds of 12 m/s,16 m/s,20 m/s,and 24 m/s were 2.74,4.19,5.28,and 6.12 cm,respectively.The mean grain size basically first decreases and then increases with increasing height under different wind speeds.The sorting improves with increasing wind speed,while the kurtosis and skewness show relationships with only the characteristics of the parent soil.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41772197, 41602113)the Open Research Fund from the Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineral (Shandong University of Science and Technology) (Grant Nos. DMSM2017011, DMSM2017010)+1 种基金the Scientific Research Fund from the Danxiashan Administrative Committee (Grant No. DXSGEO2019001)Jiangxi Provincial Graduate Innovation Fund Project (YC2018– S336)
文摘Tafoni occur generally in granular rocks around the world, but their origin remains controversial. In this study,the roles of lithology, micro–climate, and organism in tafoni development are investigated in the Danxiashan UNESCO Global Geopark of South China. The Jinshiyan Temple and Luyitang sites along the Jinjiang River are chosen to conduct tafoni morphometry, bedrock petrography, and micro–climate analyses. The research methods used in this study include field observations and measurements, Voronoi diagrams, polarizing microscopic and scanning electron microscopic(SEM)image analysis, and meteorological detection. The tafoni are mostly 2–10 cm in length and elliptical in shape. The Late Cretaceous Jinshiyan sandstones are characterized by a grain–to–grain contact fabric and moderate sorting with a high proportion of soluble grains and cements. The Voronoi diagrams developed through the Arc GIS software are largely consistent with the tafoni openings. Moreover, owing to exposure to solar insolation, the external temperature values are higher than the internal ones, while the external relative humidity values are lower than the internal ones. Therefore, the permeable Jinshiyan sandstones are fundamental for tafoni development, while the abundant moisture from the Jinjiang River and frequent rains is favorable for salt weathering in tandem with biological activities. At last, a five–stage development model is proposed for the tafoni progression in the study area.
基金supported by the National Natural Science Foundation of China (Grant nos.: 40930105, 41172325)the Chinese Academy of Sciences (CAS) Strategic Priority Research Program (grant no. XDA05120502)
文摘Identifying the provenance of aeolian sediments in the Hunshandake Sandy Land is of great importance for understanding the formation of the dune fields in the mid-latitudes and for deciphering information about desert's responses to global change. By determining the major and trace elements concentrations of aeolian sands in three grain size fractions from the central and western parts of the Hunshandake Sandy Land, we systematically study the provenance and the depositional history of aeolian sands in this desert environment. Our results show that aeolian sands from the Hunshandake Sandy Land are enriched in SiO2 and are depleted in many other elements compared to those of the Upper Continent Crust (UCC). Variations of the immobile elements ratios like Zr/Hf, La/Yb, Th/Nb, La/Nb, LaN/YbN, GdN/YbN are relatively large in the coarse and medium fractions but minor in the fine fractions. Eu anomalies are quite different in the coarse fractions, but mostly positive in the medium fractions and all negative in the fine fractions. Decreasing tendency of Zr concentrations from the west to the east in the Hunshandake Sandy Land is evident in the coarse sands but rather weak in the fine grain size fractions. Our geochemical data indicate that the sources for the coarse and medium fractions of aeolian sands are diverse, influenced by local geology and geomorphology, while the fine sand fractions are more homogenous due to intensive mixture mainly by aeolian processes. Various ratios of immobile elements suggest that these sands should be sourced primarily from the surrounding mountains by fluvial/alluvial processes rather than from any remote territories. Aeolian sands with Ce negative anomalies are widely distributed in the Hunshandake Sandy Land, indicating that aquatic environments have occurred extensively prior to the occurrence of the dune field.
基金National Key Basic Research Program of China (2011CB403306)
文摘The Ulanbuh Desert borders the upper reach of the Yellow River. Every year, a mass of aeolian sand is blown into the Yellow River by the prevailing wind and the coarse aeolian sand results in serious silting in the Yellow River. To estimate the quantity of aeolian sediments from the Ulanbuh Desert blown into the Yellow River, we simulated the saltation processes of aeolian sediments in the Ulanbuh Desert. Then we used a saltation submodel of the IWEMS (integrated Wind-Erosion Modeling System) and its accompanying RS (Remote Sensing) and GIS (Geographic Information System) modules to estimate the quantity of saltation sediments blown into the Yellow River from the Ulanbuh Desert. We calibrated the saltation submodel by the synchronous observation to wind ve- locity and saltation sediments on several points with different vegetation cover. The vegetation cover, frontal area of vegetation, roughness length, and threshold friction velocity in various regions of the Ulanbuh Desert were obtained using NDVI (Normalized Difference Vegetation Index) data, measured sand-particle sizes, and empirical relation- ships among vegetation cover, sand-particle diameters, and wind velocity. Using these variables along with the observed wind velocities and saltation sediments for the observed points, the saltation model was validated. The model results were shown to be satisfactory (RMSE less than 0.05 and IRel less than 17%). In this study, a subdaily wind-velocity program, WlNDGEN, was developed using this model to simulate hourly wind velocities around the Ulanbuh Desert. By incorporating simulated hourly wind-velocity and wind-direction data, the quantity of saltation sediments blown into the Yellow River was calculated with the saltation submodel. The annual quantity of aeolian sediments blown into the Yellow River from the Ulanbuh Desert was 5.56x106 t from 2001 to 2010, most of which occurred in spring (from March to May); for example, 6.54x10~ tons of aeolian sand were blown into the Yellow River on 25 April, 2010. However, in summer and winter, the saltation process occasionally occurred. This research has supplied some references to prevent blown sand hazards and silting in the Yellow River.
基金financially supported by the Foundation of China Geological Survey (DD20160297)National Natural Science Foundation of China (Grant No. 41877235)the National Key Research and Development Program of China (Grant No. 2017YFC1501000)
文摘Aeolian sand landforms in the Yarlung Zangbo River(YZR) valley are a special type of aeolian landform that has attracted the attention of many scholars. However, the spatial distribution as well as the formation mechanism of aeolian sand has rarely been reported with integrated studies. In this paper, for remote sensing interpretation, scanning electron microscopy(SEM), X-ray diffraction(XRD) and particle size distribution(PSD) methods were used to analyze the spatial distribution and the deposition characteristics of aeolian sand. Combined with wind data and topography, the main driving factors and the formation mechanism of aeolian sand landforms were also examined. In the middle reaches of the YZR valley, there is a total of 2324.43 km^2 of aeolian sand, especially on the north bank of the wide valleys. In different wide valleys, the aeolian sand landforms exhibit a decreasing trend from the upstream to the downstream regions in both the area and expansion rate of aeolian sand. The cyclonic vortexes generated by the westerly winds and glacial winds are the main driving factors for transporting alluvial sand to the riverbank areas to form aeolian dunes. There are three main types of sand dunes in the river valley: climbing dunes, lee dunes and circumfluent dunes. Climbing dunes and lee dunes are mostly located west of the Jiacha Gorge, and the circumfluent dunes are mostly located east of the Jiacha Gorge.
基金This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Pan-Third Pole Environment Study for a Green Silk Road (Grant No. XDA 2009000001)the National Natural Science Foundation of China (Grants No. 41977393 and 41671204)
文摘The northeastern Qinghai-Tibetan Plateau(QTP) of China is located at the triple junction of the Asian winter and summer monsoons and the westerlies, where paleoclimatic evolution has an important scientific significance for recognizing the spatial-temporal pattern of Asian monsoons in the past and predicting environmental change in the future. Nevertheless, the framework of the Holocene moisture variation and related mechanisms remain controversial, owing to complex hydroclimatic conditions triggered by the landform of the large mountain-arid basin. Here, we employed geochemical proxies from typical aeolian sand-palaeosol sequences in the Gonghe Basin, northeastern QTP, together with Optically Stimulated Luminescence(OSL) dating, to reconstruct the pattern of effective moisture variation and associated mechanisms in this region. Our results indicate that the regional effective moisture was at its lowest until 9–8 ka, and approached a maximum during 8–4/3 ka of the middle Holocene. Afterwards, the climate became relatively dry in general, but with a transient humid interval around 2–1 ka. Our geochemical evidence indicates that the dry early Holocene probably can be attributed to a strong winter monsoon forced by remnant ice sheet, combined with the high evaporation caused by solar insolation. Also, shifts of humid-dry are closely linked to the Asian summer monsoonal strength and therefore the balance of evaporation-precipitation in the middle and late Holocene. Thus, the pattern of the Holocene effective moisture variation is characterized as the ‘monsoon model’ in a closed intermontane arid and semi-arid basin near the western Asian monsoonal limit.
基金supported by the National Natural Science Foundation of China (41225001)
文摘Mu Us Desert, a region with high aeolian activity, is at extremely high risk of sandy desertification. Using surface soil samples collected from Mu Us Desert of northern China, we evaluated the effects of aeolian processes on nutrient loss from surface soils by employing wind tunnel experiments. The experiments were conducted using free-stream wind velocities of 14, 16, 18 and 22 m/s. Our results showed that the fine particles (〈50 pm in diameter; 12.28% of all transported materials) carrying large nutrient Ioadings were exported outside the study area by ae- olian processes. After the erodible fine particles were transported away from the soil surfaces at low wind velocity (i.e. 14 m/s), the following relatively high wind velocity (i.e. 22 m/s) did not have any significant effect on nutrient export, because the coefficients of variation for soil organic matter, total phosphorus, total nitrogen and available potassium were usually 〈5%. Our experimental results confirmed that aeolian processes result in a large amount of nutrient export, and consequently increase the risk of sandy desertification in arid and semi-arid ecosystems.
基金funded by the National Natural Science Foundation of China (Grants Nos. 41301012, 41771020 and U1405231)Natural Science Foundation of Fujian (Grant No. 2018R1034-5)Innovation Research Team Fund of Fujian Normal University (Grant No. IRTL1705)
文摘The 'Old Red Sand' is a type of semicemented medium-fine sandy sediment that is red(10R_4/8) or brown red(2.5YR_4/8) in colour and is found in late Quaternary deposits. The sediments have distinctive characteristics and are a critical archive for understanding climatic changes in the coastal areas of East Asia. The ages of the late Quaternary aeolian sand dunes from Haitan Island in the coastal area of South China are still in debate. In this study, three sets of marine terraces were identified in the northern region of Haitan Island. Aeolian dune sands are well preserved on the top of these terraces. Quartz Optically Stimulated Luminescence dating and the distribution of the formation ages demonstrated that the palaeo-dunes are deposits from the middle-late period of the Late Pleistocene(Q_3^(2-3)). The period may be divided into three stages, 100-90 ka, 70-60 ka, and 40-20 ka, in which the palaeo-dunes of the first two stages are more widespread and were formed separately during a low-sea level period of the Marine Isotope Stages 5 b and 4. Several depositional palaeo-flood event records were preserved during the last stage due to the increasing gradient of mountain gullies formed during the Last Glacial Maximum.
基金supported by National Natural Science Foundation of China (Grant Nos. 41301012, 41771020)Special Research of Public Welfare Scientific Research Institutes of Fujian Province, China (Grant No. 2018R1034-5)the Innovation Research Team Fund of Fujian Normal University (Grant No. IRTL1705)
文摘Coastal dunes are a common geomorphic type in sandy coastal zones.They are a record of the coupled evolutionary processes of the wind and ocean waves.Many coastal dune fields have developed on the east coast of Fujian China and now occur as widespread typical coastal aeolian sand landforms on the Liuao Peninsula,Gulei Peninsula and Dongshan Island,but it is difficult to evaluate the dynamic geomorphologic process of sandy coast due to the lack of systematic and accurate chronological data.In this study,we selected the Hutoushan(HTS)aeolian dune on the Liuao Peninsula as the research object.Optical dating and grain-size analysis were applied to sand samples from the aeolian sequence of a profile of the HTS dune.The results show that the ages of seven samples of this profile were in the range of 37.8–0.19 ka from 4.0 to 0.2 m deep.These correspond to the Marine Isotope Stage 3(MIS3),abrupt climatic change events of 4.2 and 1.1 ka and the Little Ice Age(LIA),respectively.These samples displayed evidence of a longer-term climate trend in this area.The period of formation of this coastal aeolian dune corresponds to a cold and arid climate associated with the East Asia Winter Monsoon(EAWM).Periods of dune fixation and rubification are evidence of a hot and humid climate.Mobilization and stabilization of the aeolian dune is an important characteristic of the coastal evolution in South China since the late Pleistocene.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41371032, 41671003, 41601189, 41672349)
文摘Given the conflicts over the proposed formation mechanisms of Xiashu loess, the question of the provenance of sediments comprising the Xiashu loess in the Yangtze River Delta has not been satisfactorily resolved. In this study, the provenance of aeolian sediments of the Yangtze River Delta, China was examined by applying the detrial zircon U–Pb dating technique, Sr–Nd isotopic and trace element compositional analysis. U-Pb dating analysis was conducted on the Xiashu loess at three locations over the Yangtze River Delta, including Huangnishan(HNS) hill, Shengshan(SS) island and the Xuancheng(XC) area. The Xiashu loess and the sediments of the Yangtze River Valley share considerable similarity in their zircon U-Pb age spectra with the same main age peak and comparable age distribution. By contrast, significant differences in the age spectra, existbetween the Xiashu loess and loess deposits of Chinese Loess Plateau(CLP). Coarse grains of the Yangtze River Delta loess may have a proximal material source identical to the sediments from the Yangtze River valley. Sr–Nd isotopic values of the Xiashu loess match those from the northern margin of the Tibetan Plateau. Rare earth element ratios independent of grain size illustrate that the values from loess of the Yangtze River Delta mostly overlap with those of CLP loess. This feature implies that loess from the Yangtze River Delta has a dominant source of distant material similar as the CLP loess. As such, we conclude that multi-proxy analysis of sediments can shed new light on tracing the provenance of aeolian loess in the Yangtze River Delta.
基金supported by the National Basic Research Program of China (No. 2009CB421300): "The Processes of Oasifica-tion-Desertification and their Responding to Human Activities & Climatic Change and their Regulation in the Arid Region of China"
文摘Aeolian desertification has rapidly developed in the past 50 years in Northern China,covered an area of 0.386 million km2 by 2000,affected nearly 170 million population,and caused the direct and indirect economic loss of about $6.75(U.S.dollar) billion per year.Here we present several lines of evidence to demonstrate that human activities guided by policy shifts have been a major force to drive aeolian desertification via changes in land-use patterns and intensity.It is suggested that the desertification can be curbed or even reversed by adopting prevention and control measures with ecologically sound land-use practices in China.