Synthetic polymer hydrogel nanoparticles(NPs)were developed to function as abiotic affinity reagents for fibrinogen.These NPs were made using both temperature-sensitive N-isopropyl acrylamide(NIPAm)and L-amino acid mo...Synthetic polymer hydrogel nanoparticles(NPs)were developed to function as abiotic affinity reagents for fibrinogen.These NPs were made using both temperature-sensitive N-isopropyl acrylamide(NIPAm)and L-amino acid monomers.Five kinds of L-amino acids were acryloylated to obtain functional monomers:L-phenylalanine(Phe)and L-leucine(Leu)with hydrophobic side chains,L-glutamic acid(Glu)with negative charges,and L-lysine(Lys)and L-arginine(Arg)with positive charges.After incubating the NPs with fibrinogen,g-globulin,and human serum albumin(HSA)respectively,the NPs that incorporated Nacryloyl-Arg monomers(AArg@NPs)showed the strongest and most specific binding affinity to fibrinogen,when compared with g-globulin and HSA.Additionally,the fibrinogen-AArg binding model had the best docking scores,and this may be due to the interaction of positively charged AArg@NPs and the negatively charged fibrinogen D domain and the hydrophobic interaction between them.The specific adsorption of AArg@NPs to fibrinogen was also confirmed by the immunoprecipitation assay,as the AArg@NPs selectively trapped the fibrinogen from a human plasma protein mixture.AArg@NPs had a strong selectivity for,and specificity to,fibrinogen and may be developed as a potential human fibrinogen-specific affinity reagent.展开更多
Affinity reagents are important tools in the biological sciences for understanding biological processes and for studying protein expression, localization and interactions. However, traditional affinity reagents such a...Affinity reagents are important tools in the biological sciences for understanding biological processes and for studying protein expression, localization and interactions. However, traditional affinity reagents such as antibodies(and their fragments) and non-immunoglobulin(non-Ig) scaffold binders, usually suffer from problems of poor cellular uptake efficiency, high production cost, and low structural stability. This leads to rapid development of small antibody-like affinity reagents such as scaffold-free cyclic and multicyclic peptides, which usually have 5-30 amino acid residues, thus lying between non-Ig scaffolds and small molecules in size. In this mini-review, we highlight the recent development in mono-and multi-cyclic peptide mimics of antibodies, including cyclic peptide affinity reagents that have been developed for use in antibody-like applications, novel synthetic strategies for multicyclic peptides, and promising peptide library screening platforms. We also provide a perspective on the future development in multicyclic peptide mimics of antibodies.展开更多
基金This work was supported by the Natural Science Foundation of Guangdong Province,China(Grant No.:2017A030313775)the Science and Technology Planning Project of Guangdong Province,China(Grant No.:2016A010103016)the Science and Technology Planning Project of Guangzhou City of Guangdong Province,China(Grant No.:201607010148).
文摘Synthetic polymer hydrogel nanoparticles(NPs)were developed to function as abiotic affinity reagents for fibrinogen.These NPs were made using both temperature-sensitive N-isopropyl acrylamide(NIPAm)and L-amino acid monomers.Five kinds of L-amino acids were acryloylated to obtain functional monomers:L-phenylalanine(Phe)and L-leucine(Leu)with hydrophobic side chains,L-glutamic acid(Glu)with negative charges,and L-lysine(Lys)and L-arginine(Arg)with positive charges.After incubating the NPs with fibrinogen,g-globulin,and human serum albumin(HSA)respectively,the NPs that incorporated Nacryloyl-Arg monomers(AArg@NPs)showed the strongest and most specific binding affinity to fibrinogen,when compared with g-globulin and HSA.Additionally,the fibrinogen-AArg binding model had the best docking scores,and this may be due to the interaction of positively charged AArg@NPs and the negatively charged fibrinogen D domain and the hydrophobic interaction between them.The specific adsorption of AArg@NPs to fibrinogen was also confirmed by the immunoprecipitation assay,as the AArg@NPs selectively trapped the fibrinogen from a human plasma protein mixture.AArg@NPs had a strong selectivity for,and specificity to,fibrinogen and may be developed as a potential human fibrinogen-specific affinity reagent.
基金the financial support from the National Natural Science Foundation of China(No.21475109)the Program for Changjiang Scholars and Innovative Research Team in University(No. IRT13036)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No. 21521004)
文摘Affinity reagents are important tools in the biological sciences for understanding biological processes and for studying protein expression, localization and interactions. However, traditional affinity reagents such as antibodies(and their fragments) and non-immunoglobulin(non-Ig) scaffold binders, usually suffer from problems of poor cellular uptake efficiency, high production cost, and low structural stability. This leads to rapid development of small antibody-like affinity reagents such as scaffold-free cyclic and multicyclic peptides, which usually have 5-30 amino acid residues, thus lying between non-Ig scaffolds and small molecules in size. In this mini-review, we highlight the recent development in mono-and multi-cyclic peptide mimics of antibodies, including cyclic peptide affinity reagents that have been developed for use in antibody-like applications, novel synthetic strategies for multicyclic peptides, and promising peptide library screening platforms. We also provide a perspective on the future development in multicyclic peptide mimics of antibodies.