A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalyst...A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalysts as well as influencing factors on catalytic activity have been investigated for the simultaneous removal of NOx and diesel soot particulate. An increase in catalytic activity for the selective reduction of NOx was observed with Ag addition in these perovskite oxides, especially with 5% Ag loading. This catalyst could be a promising candidate of catalytic material for the simultaneous elimination of NOx and diesel soot.展开更多
In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can r...In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.展开更多
Our recent theoretical studies have screened out CuCs-doped Ag-based promising catalysts for ethylene epoxidation[ACS Catal.11,3371(2021)].The theoretical results were based on surface modeling,while in the actual rea...Our recent theoretical studies have screened out CuCs-doped Ag-based promising catalysts for ethylene epoxidation[ACS Catal.11,3371(2021)].The theoretical results were based on surface modeling,while in the actual reaction process Ag catalysts are particle shaped.In this work,we combine density functional theory(DFT),Wulff construction theory,and micro kinetic analysis to study the catalytic performance of Ag catalysts at the particle model.It demonstrates that the CuCs-doped Ag catalysts are superior to pure Ag catalysts in terms of selectivity and activity,which is further proved by experimental validation.The characterization analysis finds that both Cu and Cs dopant promote particle growth as well as particle dispersion,resulting in a grain boundary-rich Ag particle.Besides,CuCs also facilitate electrophilic atomic oxygen formation on catalyst surface,which is benefitial for ethylene oxide formation and desorption.Our work provides a case study for catalyst design by combining theory and experiment.展开更多
Methyl glycolate is a good solvent and can be used as feedstock for the synthesis of some important organic chemicals. Catalytic hydrogenation of dimethyl oxalate (DMO) over copper-silver catalyst supported on silic...Methyl glycolate is a good solvent and can be used as feedstock for the synthesis of some important organic chemicals. Catalytic hydrogenation of dimethyl oxalate (DMO) over copper-silver catalyst supported on silica was studied. The Cu-Ag/SiO2 catalyst supported on silica sol was prepared by homogeneous deposition-precipitation of the mixture of aqueous euprammonia complex and silica sol. The proper active temperature of Cu-Ag/SiO2 catalyst for hydrogenation of DMO was 523-623 K. The most preferable reaction conditions for methyl glycolate (MG) were optimized: temperature at 468-478 K, 40-60 mesh catalyst diameter, H2/DMO ratio 40, and 1.0 h^-1 of LHSV.展开更多
Ag‐Cu‐Cl/BaCO3 catalysts with different Cl and Cu loadings, prepared by the reduction deposition impregnation method, were investigated for gas‐phase epoxidation of propylene by molecular oxygen and characterized b...Ag‐Cu‐Cl/BaCO3 catalysts with different Cl and Cu loadings, prepared by the reduction deposition impregnation method, were investigated for gas‐phase epoxidation of propylene by molecular oxygen and characterized by X‐ray diffraction, X‐ray photoelectron spectroscopy and O2 temperatureprogrammed desorption. Ag‐Cu‐Cl/BaCO3 catalyst with 0.036 wt% Cu and 0.060 wt% Cl exhibitedthe highest catalytic performance for gas‐phase epoxidation of propylene by molecular oxygen. Apropylene oxide selectivity of 83.7% and propylene conversion of 1.2% were achieved under thereaction conditions of 20% C3H6‐10% O2‐70% N2, 200 °C, 0.1 MPa and 3000 h?1. Increasing the Clloading allowed Ag to ensemble easier, whereas changing the Cu loading showed little effect on Agcrystallite size. The appropriate Cl loading of Ag‐Cu‐Cl/BaCO3 catalyst can reduce the dissociationadsorption of oxygen to atomic oxygen species leading to the combustion of propylene to CO2, whichbenefits epoxidation of propylene by molecular oxygen. Excessive Cl loading of Ag‐Cu‐Cl/BaCO3catalyst decreases propylene conversion and propylene oxide selectivity remarkably because of Clpoisoning. The appropriate Cu loading of Ag‐Cu‐Cl/BaCO3 catalyst is efficient for the epoxidation ofpropylene by molecular oxygen, and an excess Cu loading decreases propylene oxide selectivitybecause the aggregation of Cu species increases the exposed surfaces of Ag nanoparticles, whichwas shown by slight increases in atomic oxygen species adsorbed. The appropriate loadings of Cu and Cl of Ag‐Cu‐Cl/BaCO3 catalyst are important to strike the balance between molecular oxygen and atomic oxygen species to create a favorable epoxidation of propylene by molecular oxygen.展开更多
The catalytic decomposition of NO over Ag-ZSM-5 catalyst prepared by ion-exchange was investigated. The exchanged silver in the zeolite was reduced and it collected in the course of the reaction to form silver particl...The catalytic decomposition of NO over Ag-ZSM-5 catalyst prepared by ion-exchange was investigated. The exchanged silver in the zeolite was reduced and it collected in the course of the reaction to form silver particles of about 20 nm. The catalytic reaction induced a pronounced restructuring of the Ag particles through preferential formation of the (111) facets. These facets were shown to hind a tightly bound oxygen species (O-gamma). The O-gamma species occupies the active sites for NO adsorption resulting in catalyst deactivation. It could be removed by appropriate reducing agents, such as CO, to recover the active sites at elevated temperatures.展开更多
ZnO-Al2O3 derived from layered double hydroxides (ZnAl-LDH) was successfully applied for dispersion of Pd-Ag bimetallic catalysts for the selective hydrogenation of acetylene to ethylene and the Pd-Ag/ZnO-Al2O3 cata...ZnO-Al2O3 derived from layered double hydroxides (ZnAl-LDH) was successfully applied for dispersion of Pd-Ag bimetallic catalysts for the selective hydrogenation of acetylene to ethylene and the Pd-Ag/ZnO-Al2O3 cata- lyst showed the best catalytic performance among the prepared samples. It was found that the catalyst carrier of ZnO-Al2O3 metal-oxides derived form ZnAl-LDH could significantly suppress the over-hydrogenation of acetylene to obtain the relatively higher selectivity of ethylene. The introduction of Ag restricted efficiently the formation of coke because of the oligomerization reaction, which was further evidenced by thermal gravimetric analysis. The se- lectivity towards ethylene was in the order of Pd-Ag/ZnO-Al2O3〉Pd/ZnO-Al2O3〉Pd-Ag/Al2O3〉Pd/Al2O3 at a high conversion level. As the thermal gravimetric and differential temperature analysis (TG-DTA) revealed, Pd-Ag intermetallic catalyst on the ZnO-Al2O3 support showed less coke formation.展开更多
Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC cataly...Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC catalysts, after reduction in H2 at low temperatures (≤200 ℃) following heat treatment in He at 200 ℃ (He200H200), exhibited the best catalytic properties. Temperature-programmed desorption (TPD), X-ray diffraction (XRD) and temperature-programmed reduction (TPR) results indicated that silver oxides were produced during heat treatment in He at 200 ℃ which were reduced to metal silver nanoparticles in H2 at low temperatures (≤200 ℃), simultaneously generating the adsorbed water/OH. CO conversion was enhanced 40% after water treatment following heat treatment in He at 600 ℃. These results imply that the metal silver nanoparticles are the active species and the adsorbed water/OH has noticeable promotion effects on CO oxidation. However, the promotion effect is still limited compared to gold catalysts under the similar conditions, which may be the reason of low selectivity to CO oxidation in PROX over silver catalysts. The reported Ag/AC-S-He catalyst after He200H200 treatment displayed similar PROX of CO reaction properties to Ag/SiO2. This means that Ag/AC catalyst is also an efficient low-temperature CO oxidation catalyst.展开更多
Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal.In the present stud...Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal.In the present study,Ag/γ-Al2O3 catalysts were synthesized by the solvothermal process and characterized by XRD,TG?DTA,TEM,UV?Vis and FT?IR.It was found that high-performance Ag/γ-Al2O3 catalysts could be synthesized by properly selecting starting materials,controlling the composition of solvent and other reaction conditions.The microstructure evolution of the catalysts was also discussed.展开更多
文摘A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalysts as well as influencing factors on catalytic activity have been investigated for the simultaneous removal of NOx and diesel soot particulate. An increase in catalytic activity for the selective reduction of NOx was observed with Ag addition in these perovskite oxides, especially with 5% Ag loading. This catalyst could be a promising candidate of catalytic material for the simultaneous elimination of NOx and diesel soot.
基金financial support from National Natural Science Foundation of China(Nos.52004102 and 22078125)Postdoctoral Science Foundation of China(No.2021M690068)+2 种基金Fundamental Research Funds for the Central Universities(Nos.JUSRP221018 and JUSRP622038)Key Laboratory of Green Cleaning Technology and Detergent of Zhejiang Province(No.Q202204)Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(No.GCP202112)。
文摘In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.
基金This work is supported by PetroChina Innovation Foundation(2019D-5007-0403).
文摘Our recent theoretical studies have screened out CuCs-doped Ag-based promising catalysts for ethylene epoxidation[ACS Catal.11,3371(2021)].The theoretical results were based on surface modeling,while in the actual reaction process Ag catalysts are particle shaped.In this work,we combine density functional theory(DFT),Wulff construction theory,and micro kinetic analysis to study the catalytic performance of Ag catalysts at the particle model.It demonstrates that the CuCs-doped Ag catalysts are superior to pure Ag catalysts in terms of selectivity and activity,which is further proved by experimental validation.The characterization analysis finds that both Cu and Cs dopant promote particle growth as well as particle dispersion,resulting in a grain boundary-rich Ag particle.Besides,CuCs also facilitate electrophilic atomic oxygen formation on catalyst surface,which is benefitial for ethylene oxide formation and desorption.Our work provides a case study for catalyst design by combining theory and experiment.
文摘Methyl glycolate is a good solvent and can be used as feedstock for the synthesis of some important organic chemicals. Catalytic hydrogenation of dimethyl oxalate (DMO) over copper-silver catalyst supported on silica was studied. The Cu-Ag/SiO2 catalyst supported on silica sol was prepared by homogeneous deposition-precipitation of the mixture of aqueous euprammonia complex and silica sol. The proper active temperature of Cu-Ag/SiO2 catalyst for hydrogenation of DMO was 523-623 K. The most preferable reaction conditions for methyl glycolate (MG) were optimized: temperature at 468-478 K, 40-60 mesh catalyst diameter, H2/DMO ratio 40, and 1.0 h^-1 of LHSV.
基金supported by National Basic Research Program of China (2013CB933200)Commission of Science and Technology of Shanghai Municipality (15DZ1205305)~~
文摘Ag‐Cu‐Cl/BaCO3 catalysts with different Cl and Cu loadings, prepared by the reduction deposition impregnation method, were investigated for gas‐phase epoxidation of propylene by molecular oxygen and characterized by X‐ray diffraction, X‐ray photoelectron spectroscopy and O2 temperatureprogrammed desorption. Ag‐Cu‐Cl/BaCO3 catalyst with 0.036 wt% Cu and 0.060 wt% Cl exhibitedthe highest catalytic performance for gas‐phase epoxidation of propylene by molecular oxygen. Apropylene oxide selectivity of 83.7% and propylene conversion of 1.2% were achieved under thereaction conditions of 20% C3H6‐10% O2‐70% N2, 200 °C, 0.1 MPa and 3000 h?1. Increasing the Clloading allowed Ag to ensemble easier, whereas changing the Cu loading showed little effect on Agcrystallite size. The appropriate Cl loading of Ag‐Cu‐Cl/BaCO3 catalyst can reduce the dissociationadsorption of oxygen to atomic oxygen species leading to the combustion of propylene to CO2, whichbenefits epoxidation of propylene by molecular oxygen. Excessive Cl loading of Ag‐Cu‐Cl/BaCO3catalyst decreases propylene conversion and propylene oxide selectivity remarkably because of Clpoisoning. The appropriate Cu loading of Ag‐Cu‐Cl/BaCO3 catalyst is efficient for the epoxidation ofpropylene by molecular oxygen, and an excess Cu loading decreases propylene oxide selectivitybecause the aggregation of Cu species increases the exposed surfaces of Ag nanoparticles, whichwas shown by slight increases in atomic oxygen species adsorbed. The appropriate loadings of Cu and Cl of Ag‐Cu‐Cl/BaCO3 catalyst are important to strike the balance between molecular oxygen and atomic oxygen species to create a favorable epoxidation of propylene by molecular oxygen.
文摘The catalytic decomposition of NO over Ag-ZSM-5 catalyst prepared by ion-exchange was investigated. The exchanged silver in the zeolite was reduced and it collected in the course of the reaction to form silver particles of about 20 nm. The catalytic reaction induced a pronounced restructuring of the Ag particles through preferential formation of the (111) facets. These facets were shown to hind a tightly bound oxygen species (O-gamma). The O-gamma species occupies the active sites for NO adsorption resulting in catalyst deactivation. It could be removed by appropriate reducing agents, such as CO, to recover the active sites at elevated temperatures.
基金This work was supported by the National Natural Science Foundation of China (21476145). The authors thank Y. F. Liu, Z. L. Guo, L. M. Li, and C. Y. ki for useful discussion and helps. X. P. Gao thanks the China Cheng Da Engineering Co., Ltd for scholarship.
文摘ZnO-Al2O3 derived from layered double hydroxides (ZnAl-LDH) was successfully applied for dispersion of Pd-Ag bimetallic catalysts for the selective hydrogenation of acetylene to ethylene and the Pd-Ag/ZnO-Al2O3 cata- lyst showed the best catalytic performance among the prepared samples. It was found that the catalyst carrier of ZnO-Al2O3 metal-oxides derived form ZnAl-LDH could significantly suppress the over-hydrogenation of acetylene to obtain the relatively higher selectivity of ethylene. The introduction of Ag restricted efficiently the formation of coke because of the oligomerization reaction, which was further evidenced by thermal gravimetric analysis. The se- lectivity towards ethylene was in the order of Pd-Ag/ZnO-Al2O3〉Pd/ZnO-Al2O3〉Pd-Ag/Al2O3〉Pd/Al2O3 at a high conversion level. As the thermal gravimetric and differential temperature analysis (TG-DTA) revealed, Pd-Ag intermetallic catalyst on the ZnO-Al2O3 support showed less coke formation.
基金supported by the National Natural Science Foundation of China (No. 21207039)the Natural Science Foundation of Guangdong Province, China (Grant No. S2011010000737)+2 种基金the Doctoral Fund of Ministry of Education of China (20110172120017)the Fundamental Research Funds for the Central Universities (Grant No. 2011zm 0048)the Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences (No. Y007K1)
文摘Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC catalysts, after reduction in H2 at low temperatures (≤200 ℃) following heat treatment in He at 200 ℃ (He200H200), exhibited the best catalytic properties. Temperature-programmed desorption (TPD), X-ray diffraction (XRD) and temperature-programmed reduction (TPR) results indicated that silver oxides were produced during heat treatment in He at 200 ℃ which were reduced to metal silver nanoparticles in H2 at low temperatures (≤200 ℃), simultaneously generating the adsorbed water/OH. CO conversion was enhanced 40% after water treatment following heat treatment in He at 600 ℃. These results imply that the metal silver nanoparticles are the active species and the adsorbed water/OH has noticeable promotion effects on CO oxidation. However, the promotion effect is still limited compared to gold catalysts under the similar conditions, which may be the reason of low selectivity to CO oxidation in PROX over silver catalysts. The reported Ag/AC-S-He catalyst after He200H200 treatment displayed similar PROX of CO reaction properties to Ag/SiO2. This means that Ag/AC catalyst is also an efficient low-temperature CO oxidation catalyst.
基金Supported by a Grant-in-Aid for the COE project,Giant Molecules and Complex Systems2004,Ministry of Education,Culture,Sports,Science and Technology of Japan.National Natural Scientific Foundation of China(No.50174050)
文摘Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal.In the present study,Ag/γ-Al2O3 catalysts were synthesized by the solvothermal process and characterized by XRD,TG?DTA,TEM,UV?Vis and FT?IR.It was found that high-performance Ag/γ-Al2O3 catalysts could be synthesized by properly selecting starting materials,controlling the composition of solvent and other reaction conditions.The microstructure evolution of the catalysts was also discussed.