SnO_(2),with its high theoretical capacity,abundant resources,and environmental friendliness,is widely regarded as a potential anode material for lithium-ion batteries(LIBs).Nevertheless,the coarsening of the Sn nanop...SnO_(2),with its high theoretical capacity,abundant resources,and environmental friendliness,is widely regarded as a potential anode material for lithium-ion batteries(LIBs).Nevertheless,the coarsening of the Sn nanoparticles impedes the reconversion back to SnO_(2),resulting in low coulombic efficiency and rapid capacity decay.In this study,we fabricated a heterostructure by combining SnO_(2)nanoparticles with MoS_(2)nanosheets via plasma-assisted milling.The heterostructure consists of in-situ exfoliated MoS_(2)nanosheets predominantly in 1 T phase,which tightly encase the SnO_(2)nanoparticles through strong bonding.This configuration effectively mitigates the volume change and particle aggregation upon cycling.Moreover,the strong affinity of Mo,which is the lithiation product of MoS_(2),toward Sn plays a pivotal role in inhibiting the coarsening of Sn nanograins,thus enhancing the reversibility of Sn to SnO_(2)upon cycling.Consequently,the SnO_(2)/MoS_(2)heterostructure exhibits superb performance as an anode material for LIBs,demonstrating high capacity,rapid rate capability,and extended lifespan.Specifically,discharged/charged at a rate of 0.2 A g^(-1)for 300 cycles,it achieves a remarkable reversible capacity of 1173.4 mAh g^(-1).Even cycled at high rates of 1.0 and 5.0 A g^(-1)for 800 cycles,it still retains high reversible capacities of 1005.3 and 768.8 mAh g^(-1),respectively.Moreover,the heterostructure exhibits outstanding electrochemical performance in both full LIBs and sodium-ion batteries.展开更多
Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance...Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance electrocatalysts.Herein,we elaborately design and develop strongly coupled nanosheets composed of Ag nanoparticles and Sn-SnO_(2) grains,designated as Ag/Sn-SnO_(2) nanosheets(NSs),which possess optimized electronic structure,high electrical conductivity,and more accessible sites.As a result,such a catalyst exhibits unprecedented catalytic performance toward CO_(2)-to-formate conversion with near-unity faradaic efficiency(≥90%),ultrahigh partial current density(2,000 mA cm^(−2)),and superior long-term stability(200 mA cm^(−2),200 h),surpassing the reported catalysts of CO_(2) electroreduction to formate.Additionally,in situ attenuated total reflection-infrared spectra combined with theoretical calculations revealed that electron-enriched Sn sites on Ag/Sn-SnO_(2)NSs not only promote the formation of*OCHO and alleviate the energy barriers of*OCHO to*HCOOH,but also impede the desorption of H*.Notably,the Ag/Sn-SnO_(2)NSs as the cathode in a membrane electrode assembly with porous solid electrolyte layer reactor can continuously produce~0.12 M pure HCOOH solution at 100 mA cm^(−2)over 200 h.This work may inspire further development of advanced electrocatalysts and innovative device systems for promoting practical application of producing liquid fuels from CO_(2).展开更多
基金the financial support from the National Key Research and Development Program of China(2018YFA0209402,2022YFB2502003)Guangdong Basic and Applied Basic Research Foundation(2023B1515040011)Jiangxi Provincial Natural Science Foundation(20212BAB214028)
文摘SnO_(2),with its high theoretical capacity,abundant resources,and environmental friendliness,is widely regarded as a potential anode material for lithium-ion batteries(LIBs).Nevertheless,the coarsening of the Sn nanoparticles impedes the reconversion back to SnO_(2),resulting in low coulombic efficiency and rapid capacity decay.In this study,we fabricated a heterostructure by combining SnO_(2)nanoparticles with MoS_(2)nanosheets via plasma-assisted milling.The heterostructure consists of in-situ exfoliated MoS_(2)nanosheets predominantly in 1 T phase,which tightly encase the SnO_(2)nanoparticles through strong bonding.This configuration effectively mitigates the volume change and particle aggregation upon cycling.Moreover,the strong affinity of Mo,which is the lithiation product of MoS_(2),toward Sn plays a pivotal role in inhibiting the coarsening of Sn nanograins,thus enhancing the reversibility of Sn to SnO_(2)upon cycling.Consequently,the SnO_(2)/MoS_(2)heterostructure exhibits superb performance as an anode material for LIBs,demonstrating high capacity,rapid rate capability,and extended lifespan.Specifically,discharged/charged at a rate of 0.2 A g^(-1)for 300 cycles,it achieves a remarkable reversible capacity of 1173.4 mAh g^(-1).Even cycled at high rates of 1.0 and 5.0 A g^(-1)for 800 cycles,it still retains high reversible capacities of 1005.3 and 768.8 mAh g^(-1),respectively.Moreover,the heterostructure exhibits outstanding electrochemical performance in both full LIBs and sodium-ion batteries.
基金the National Science Fund for Distinguished Young Scholars(Grant No.52125103)the National Natural Science Foundation of China(Grant Nos.52301232,52071041,12074048,and 12147102)China Postdoctoral Science Foundation(Grant No.2022M720552).
文摘Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance electrocatalysts.Herein,we elaborately design and develop strongly coupled nanosheets composed of Ag nanoparticles and Sn-SnO_(2) grains,designated as Ag/Sn-SnO_(2) nanosheets(NSs),which possess optimized electronic structure,high electrical conductivity,and more accessible sites.As a result,such a catalyst exhibits unprecedented catalytic performance toward CO_(2)-to-formate conversion with near-unity faradaic efficiency(≥90%),ultrahigh partial current density(2,000 mA cm^(−2)),and superior long-term stability(200 mA cm^(−2),200 h),surpassing the reported catalysts of CO_(2) electroreduction to formate.Additionally,in situ attenuated total reflection-infrared spectra combined with theoretical calculations revealed that electron-enriched Sn sites on Ag/Sn-SnO_(2)NSs not only promote the formation of*OCHO and alleviate the energy barriers of*OCHO to*HCOOH,but also impede the desorption of H*.Notably,the Ag/Sn-SnO_(2)NSs as the cathode in a membrane electrode assembly with porous solid electrolyte layer reactor can continuously produce~0.12 M pure HCOOH solution at 100 mA cm^(−2)over 200 h.This work may inspire further development of advanced electrocatalysts and innovative device systems for promoting practical application of producing liquid fuels from CO_(2).