Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common ...Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids,glucose,and energy.Bile acids have historically been utilized as first-line,valuable therapeutic agents for related metabolic and hepatobiliary diseases.Notably,bile acids are the major active ingredients of cow bezoar and bear bile,which are commonly used traditional Chinese medicines(TCMs)with the therapeutic effects of clearing heat,detoxification,and relieving wind and spasm.In recent years,the promising performance of bile acids against infectious diseases has attracted attention from the scientific community.This paper reviews for the first time the biological activities,possible mechanisms,production routes,and potential applications of bile acids in the treatment and prevention of infectious diseases.Compared with previous reviews,we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality.In addition,to ensure a stable supply of bile acids at affordable prices,it is necessary to clarify the biosynthesis of bile acids in vivo,which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis,biosynthesis,and chemoenzymatic synthesis.Finally,we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids.The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.展开更多
Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration ...Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration of DA as hard segments into the PU molecular chain.The effects of DA content(φ)on the mechanical properties,thermal stability,and hydrophobicity of PU,both before and after the addition of KH550,were thoroughly examined.The results of microscopic mechanism analysis confirmed that KH550 chemically modified the surface of DA,facilitating its incorporation into the polyurethane molecular chain,thereby significantly enhancing the compatibility and dispersion of DA within the PU matrix.When the mass fraction of modified DA(MDA)reached 12%,the mechanical properties,thermal stability,and hydrophobicity of the composites were substantially improved,with the tensile strength reaching 14.9 MPa,and the contact angle measuring 100.6°.展开更多
To simplify the composite propellant formulation and address the current issue of the single-functionality present in existing additives,the multi-cyano,amine-based polybutadiene(AEHTPB-CN)was prepared based on AEHTPB...To simplify the composite propellant formulation and address the current issue of the single-functionality present in existing additives,the multi-cyano,amine-based polybutadiene(AEHTPB-CN)was prepared based on AEHTPB by adopting appropriate synthesis strategies.By replacing 10% of HTPB binder in the propellant formulation,it can effectively enhance the interfacial bond strength between the propellant binder matrix and solid fillers(AP(ammonium perchlorate)and RDX(cyclotrimethylene-trinitramine)),the mechanical properties of the HTPB/AP/RDX/Al propellant were superior to blank control propellant with an improvement of 35.4% in tensile strength,62.0% enhancement in elongation at break,and reduce the propellant burn rate by 10.7% with any energy loss.The function mechanism of AEHTPB-CN was systematically elucidated through experiments and computer simulation techniques.The results show that the tertiary amine group in AEHTPB-CN can react with AP to form ammonium ionic bonds,and the hydroxyl and cyano groups can form hydrogen bonding interactions with AP,which enables AEHTPB-CN to be firmly adsorbed on the AP surface through chemical and physical interactions.For RDX,the interfacial bonding effect of AEHTPB-CN is attributed to their ability to form C-H···N≡C weak hydrogen bonding interaction between the cyano group and RDX methylene group.展开更多
Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of ne...Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.展开更多
In order to solve principal-agent problems caused by interest inconformity and information asymmetry during information security outsourcing, it is necessary to design a reasonable incentive mechanism to promote clien...In order to solve principal-agent problems caused by interest inconformity and information asymmetry during information security outsourcing, it is necessary to design a reasonable incentive mechanism to promote client enterprises to complete outsourcing service actively. The incentive mechanism model of information security outsourcing is designed based on the principal-agent theory. Through analyzing the factors such as enterprise information assets value, invasion probability, information security environment, the agent cost coefficient and agency risk preference degree how to impact on the incentive mechanism, conclusions show that an enterprise information assets value and invasion probability have a positive influence on the fixed fee and the compensation coefficient; while information security environment, the agent cost coefficient and agency risk preference degree have a negative influence on the compensation coefficient. Therefore, the principal enterprises should reasonably design the fixed fee and the compensation coefficient to encourage information security outsourcing agency enterprises to the full extent.展开更多
To better understand the effect and mechanism of cold tolerant seed-coating agents on the cold tolerance of rice seedlings, the physiological and biochemical effects of four cold tolerant seed-coating agents (HET, YK...To better understand the effect and mechanism of cold tolerant seed-coating agents on the cold tolerance of rice seedlings, the physiological and biochemical effects of four cold tolerant seed-coating agents (HET, YKJ, YKZYJ, and the ABA seed coating agents) on two early indica rice varieties were studied under chilling stress. The results showed that the rice seedlings treated with cold tolerant seed-coating agents under chilling stress maintained dramatically higher root vigor, POD, CAT and SOD activities, and chlorophyll content, had lower MDA content and electrolyte leakage, and accumulated more soluble sugar and free proline, when compared with the control without the treatment, and finally showed lower plant injury rate. It was indicated that the cold tolerant seed coating agent improved the ability of rice seedlings in resisting to chilling stress. YKZYJ was ranked the first in terms of the efficiency in cold tolerance among the four cold tolerant seed-coating agents tested.展开更多
We used the no pollution natural polymer polysaccharide chitosan as the main raw material, which is supplemented by other additives, to prepare a high-efficiency environmental friendly maize seed coating agent. By det...We used the no pollution natural polymer polysaccharide chitosan as the main raw material, which is supplemented by other additives, to prepare a high-efficiency environmental friendly maize seed coating agent. By detecting the seed quality, maize seedling indexes, which include root activity, chlorophyll content and malondialdehyde (MDA) content, and through the results we found that this seed coating agent could improve the photosynthetic capacity and enhance seedling resistance. Laboratory bacteriostasis test and study showed that the antibacterial rate of this seed coating agent has reached more than 88%. Meanwhile, we analyzed and studied the antimicrobial mechanism of the seed coating agent.展开更多
By using the fault tree analysis in reliability theory as the systematical analysis approach, the dust suppression mechanism in a spray system with wetting agent is shown in a logic tree and some graphical models. Fro...By using the fault tree analysis in reliability theory as the systematical analysis approach, the dust suppression mechanism in a spray system with wetting agent is shown in a logic tree and some graphical models. From these diagrams, all factors related to the spray system and their cause and effect relationship can be seen clearly. Based on the built logic tree, several mathematical models and new ideas for expressing the dust suppressing efficiency in the spray system are put forward. The significance of all factors related to the efficiency of suppressing dust is qualitatively described. Furthermore, the new concepts, such as, the effective reaction time between dust particle and droplet, the expansion phenomenon of laden dust droplet, the functions of volatile and the relative size distribution efficiency of wetting agent are presented. All this richenes the existing mechanism of dust abatement by spraying wetting agent. At last, several problems that need to be further investigated are also suggested in the paper.展开更多
Antibacterial Ag-agents are intensively applied as broad spectrum, high-stability, high-efficiency and high-safety inorganic antibacterial agents. We have developed a new kind of antibacterial Ag-agent, namely Ag_2-x(...Antibacterial Ag-agents are intensively applied as broad spectrum, high-stability, high-efficiency and high-safety inorganic antibacterial agents. We have developed a new kind of antibacterial Ag-agent, namely Ag_2-x(NH_4)xMo_3O_(10) ·3H_2O nanowires(NWs). Carrying Ag atoms in the lattice and Ag-rich nanoparticles on the surface, the Ag-doped NWs show strong antibacterial effects for a variety of bacteria including E.coli, Staphylococcus aureus, Candida albicans and Aspergil lus niger. By performing systematic comparison experiments, we have proven that the main antibacterial effects are neither resulted from the tiny amount of Ag+ions released from the Ag-doped NWs in aqueous solutions, nor resulted from Ag-rich nanoparticles of fragments of the NWs when they are slowly dissolved in the Martin broth. Instead, the effects are mainly resulted from a contact mechanism, under which, the Ag-doped NWs need to be physically in contact with the bacteria to be eliminated. This is a novel phenomenon observed in the interactions between nanomaterials and live cells, which is worthy of further investigation at the molecular scale. As the Ag-doped NWs are not dissolved in pure water or weak acids, one may find practical antibacterial applications in textile industry and food storage industry for these unique nanomaterials.展开更多
The rapid expansion of enterprises makes product collaborative design (PCD) a critical issue under the distributed heterogeneous environment, but as the collaborative task of large-scale network becomes more complic...The rapid expansion of enterprises makes product collaborative design (PCD) a critical issue under the distributed heterogeneous environment, but as the collaborative task of large-scale network becomes more complicated, neither unified task decomposition and allocation methodology nor Agent-based network management platform can satisfy the increasing demands. In this paper, to meet requirements of PCD for distributed product development, a collaborative design mechanism based on the thought of modularity and the Agent technology is presented. First, the top-down 4-tier process model based on task-oriented modular and Agent is constructed for PCD after analyzing the mapping relationships between requirements and functions in the collaborative design. Second, on basis of sub-task decomposition for PCD based on a mixed method, the mathematic model of task-oriented modular based on multi-objective optimization is established to maximize the module cohesion degree and minimize the module coupling degree, while considering the module executable degree as a restriction. The mathematic model is optimized and simulated by the modified PSO, and the decomposed modules are obtained. Finally, the Agent structure model for collaborative design is put forward, and the optimism matching Agents are selected by using similarity algorithm to implement different task-modules by the integrated reasoning and decision-making mechanism with the behavioral model of collaborative design Agents. With the results of experimental studies for automobile collaborative design, the feasibility and efficiency of this methodology of task-oriented modular and Agent-based collaborative design in the distributed heterogeneous environment are verified. On this basis, an integrative automobile collaborative R&D platform is developed. This research provides an effective platform for automobile manufacturing enterprises to achieve PCD, and helps to promote product numeralization collaborative R&D and management development.展开更多
Ecological capital operation is a major means for innovation of ecological environment protection,and provides ecological security for sustainable economic and social development.In this paper,key factors for construc...Ecological capital operation is a major means for innovation of ecological environment protection,and provides ecological security for sustainable economic and social development.In this paper,key factors for construction of incentive mechanism of ecological capital operation are explored from government cognition,enterprise attitude and public awareness.Via model building and parameter setting,incentive mechanism system of single objective is established effectively,to promote effective realization of regional ecological capital operation.展开更多
The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction a...The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.展开更多
T-2 toxin is one of the most widespread and toxic fungal toxins in food and feed.It can cause gastrointestinal toxicity,hepatotoxicity,immunotoxicity,reproductive toxicity,neurotoxicity,and nephrotoxicity in humans an...T-2 toxin is one of the most widespread and toxic fungal toxins in food and feed.It can cause gastrointestinal toxicity,hepatotoxicity,immunotoxicity,reproductive toxicity,neurotoxicity,and nephrotoxicity in humans and animals.T-2 toxin is physicochemically stable and does not readily degrade during food and feed processing.Therefore,suppressing T-2 toxin-induced organ toxicity through antidotes is an urgent issue.Protective agents against the organ toxicity of T-2 toxin have been recorded widely in the literature,but these protective agents and their molecular mechanisms of detoxification have not been comprehensively summarized.In this review,we provide an overview of the various protective agents to T-2 toxin and the molecular mechanisms underlying the detoxification effects.Targeting appropriate targets to antagonize T-2 toxin toxicity is also an important option.This review will provide essential guidance and strategies for the better application and development of T-2 toxin antidotes specific for organ toxicity in the future.展开更多
Both conflict and asymmetric information exist betweenthe telecom operators and the service provider,and result in illegal behaviors of the service provider.The relationship between the telecom operators andthe servic...Both conflict and asymmetric information exist betweenthe telecom operators and the service provider,and result in illegal behaviors of the service provider.The relationship between the telecom operators andthe service provider is classical multi-task principalagentrelationship. The multi-task incentive for theservice provider is considered in the design of theprincipal-agent incentive contract, and it is necessaryto add the multi-task incentive to the serviceproviders through the analysis of the risk costs andthe agency costs of this problem.展开更多
The influence of process control agents (PCAs) on the mechanical properties of Ni3AI intermetallic compounds by mechanical alloying was investigated in order to develop oxide deposition reinforced intermetallics. Th...The influence of process control agents (PCAs) on the mechanical properties of Ni3AI intermetallic compounds by mechanical alloying was investigated in order to develop oxide deposition reinforced intermetallics. The PCAs in mechanical alloying were pure ligroin, 75 vol.% ligroin + 25 vol.% alcohol, 50 vol.% ligroin + 50 vol.% alcohol, 25 vol.% ligroin + 75 vol.% alcohol, and pure alcohol. The normal composition is Ni-22.9at.%Al-0.5at.%B, the ball-to-powder weight ratio is 10:1, and the milling time is 30 min. Then, the powders were sintered by spark plasma sintering under 40 MPa for 5 min at 1000℃. The results show that a higher bending strength and a higher hardness were obtained when the PCAs were 75% ligroin + 25% alcohol in mechanical alloying. The bending strength is about 2700 MPa and the hardness (HV) is more than 6 GPa.展开更多
Polypropylene fiber and expansive agent are used in airport concrete to improve its shrinkage cracking resistance and mechanical properties.The concrete specimens with amount content of polypropylene fiber or expansiv...Polypropylene fiber and expansive agent are used in airport concrete to improve its shrinkage cracking resistance and mechanical properties.The concrete specimens with amount content of polypropylene fiber or expansive agent or both of them are prepared.The morphology of specimens is observed by scanning electron microscope,the time when the first crack occurred is recorded through slap test,and the mechanical properties such as compressive strength and impact energies of concrete are measured.The results show that polypropylene fiber in concrete can reduce the shrinkage and delay the first crack,improve the impact resistance obviously,and improve the compressive strength slightly.Expansive agent can compensate the shrinkage and reduce cracks of concrete pavement markedly,and improve the mechanical properties of concrete pavement slightly.The study provides recommendations for cracking control of airport concrete pavement in the future.展开更多
Eradication of human immunodeficiency virus(HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency bi...Eradication of human immunodeficiency virus(HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency biomarkers and a better understanding of the molecular mechanisms contributing to regulation of HIV expression might provide essential tools to eliminate these latently infected cells. This review aims at summarizing gene expression profiling and systems biology applications to studies of HIV latency and eradication. Studies comparing gene expression in latently infected and uninfected cells identify candidate latency biomarkers and novel mechanisms of latency control. Studies that profiled gene expression changes induced by existing latency reversing agents(LRAs) highlight uniting themes driving HIV reactivation and novel mechanisms that contribute to regulation of HIV expression by different LRAs. Among the reviewed gene expression studies, the common approaches included identification of differentially expressed genes and gene functional category assessment. Integration of transcriptomic data with other biological data types is presently scarce, and the field would benefit from increased adoption of these methods in future studies. In addition, designing prospective studies that use the same methods of data acquisition and statistical analyses will facilitate a more reliableidentification of latency biomarkers using different model systems and the comparison of the effects of different LRAs on host factors with a role in HIV reactivation. The results from such studies would have the potential to significantly impact the process by which candidate drugs are selected and combined for future evaluations and advancement to clinical trials.展开更多
基金funded by the China Academy of Chinese Medical Sciences(CACMS)Innovation Fund(CI2021A00601)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ16-YQ-037 and JJPY2022022)the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021B017-09).
文摘Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids,glucose,and energy.Bile acids have historically been utilized as first-line,valuable therapeutic agents for related metabolic and hepatobiliary diseases.Notably,bile acids are the major active ingredients of cow bezoar and bear bile,which are commonly used traditional Chinese medicines(TCMs)with the therapeutic effects of clearing heat,detoxification,and relieving wind and spasm.In recent years,the promising performance of bile acids against infectious diseases has attracted attention from the scientific community.This paper reviews for the first time the biological activities,possible mechanisms,production routes,and potential applications of bile acids in the treatment and prevention of infectious diseases.Compared with previous reviews,we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality.In addition,to ensure a stable supply of bile acids at affordable prices,it is necessary to clarify the biosynthesis of bile acids in vivo,which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis,biosynthesis,and chemoenzymatic synthesis.Finally,we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids.The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.
基金Funded by the National Key Research and Development Project(No.2019YFC1908204)the Guiding Projects in Fujian Province(No.2023H0023)the Fuzhou Science and Technology Plan Project(No.2022-P-012)。
文摘Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration of DA as hard segments into the PU molecular chain.The effects of DA content(φ)on the mechanical properties,thermal stability,and hydrophobicity of PU,both before and after the addition of KH550,were thoroughly examined.The results of microscopic mechanism analysis confirmed that KH550 chemically modified the surface of DA,facilitating its incorporation into the polyurethane molecular chain,thereby significantly enhancing the compatibility and dispersion of DA within the PU matrix.When the mass fraction of modified DA(MDA)reached 12%,the mechanical properties,thermal stability,and hydrophobicity of the composites were substantially improved,with the tensile strength reaching 14.9 MPa,and the contact angle measuring 100.6°.
文摘To simplify the composite propellant formulation and address the current issue of the single-functionality present in existing additives,the multi-cyano,amine-based polybutadiene(AEHTPB-CN)was prepared based on AEHTPB by adopting appropriate synthesis strategies.By replacing 10% of HTPB binder in the propellant formulation,it can effectively enhance the interfacial bond strength between the propellant binder matrix and solid fillers(AP(ammonium perchlorate)and RDX(cyclotrimethylene-trinitramine)),the mechanical properties of the HTPB/AP/RDX/Al propellant were superior to blank control propellant with an improvement of 35.4% in tensile strength,62.0% enhancement in elongation at break,and reduce the propellant burn rate by 10.7% with any energy loss.The function mechanism of AEHTPB-CN was systematically elucidated through experiments and computer simulation techniques.The results show that the tertiary amine group in AEHTPB-CN can react with AP to form ammonium ionic bonds,and the hydroxyl and cyano groups can form hydrogen bonding interactions with AP,which enables AEHTPB-CN to be firmly adsorbed on the AP surface through chemical and physical interactions.For RDX,the interfacial bonding effect of AEHTPB-CN is attributed to their ability to form C-H···N≡C weak hydrogen bonding interaction between the cyano group and RDX methylene group.
基金National Natural Science Foundation of China(U22B20131)for supporting this project.
文摘Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.
基金The National Natural Science Foundation of China(No.71071033)the Youth Foundation of Humanity and Social Scienceof Ministry of Education of China(No.11YJC630234)
文摘In order to solve principal-agent problems caused by interest inconformity and information asymmetry during information security outsourcing, it is necessary to design a reasonable incentive mechanism to promote client enterprises to complete outsourcing service actively. The incentive mechanism model of information security outsourcing is designed based on the principal-agent theory. Through analyzing the factors such as enterprise information assets value, invasion probability, information security environment, the agent cost coefficient and agency risk preference degree how to impact on the incentive mechanism, conclusions show that an enterprise information assets value and invasion probability have a positive influence on the fixed fee and the compensation coefficient; while information security environment, the agent cost coefficient and agency risk preference degree have a negative influence on the compensation coefficient. Therefore, the principal enterprises should reasonably design the fixed fee and the compensation coefficient to encourage information security outsourcing agency enterprises to the full extent.
文摘To better understand the effect and mechanism of cold tolerant seed-coating agents on the cold tolerance of rice seedlings, the physiological and biochemical effects of four cold tolerant seed-coating agents (HET, YKJ, YKZYJ, and the ABA seed coating agents) on two early indica rice varieties were studied under chilling stress. The results showed that the rice seedlings treated with cold tolerant seed-coating agents under chilling stress maintained dramatically higher root vigor, POD, CAT and SOD activities, and chlorophyll content, had lower MDA content and electrolyte leakage, and accumulated more soluble sugar and free proline, when compared with the control without the treatment, and finally showed lower plant injury rate. It was indicated that the cold tolerant seed coating agent improved the ability of rice seedlings in resisting to chilling stress. YKZYJ was ranked the first in terms of the efficiency in cold tolerance among the four cold tolerant seed-coating agents tested.
文摘We used the no pollution natural polymer polysaccharide chitosan as the main raw material, which is supplemented by other additives, to prepare a high-efficiency environmental friendly maize seed coating agent. By detecting the seed quality, maize seedling indexes, which include root activity, chlorophyll content and malondialdehyde (MDA) content, and through the results we found that this seed coating agent could improve the photosynthetic capacity and enhance seedling resistance. Laboratory bacteriostasis test and study showed that the antibacterial rate of this seed coating agent has reached more than 88%. Meanwhile, we analyzed and studied the antimicrobial mechanism of the seed coating agent.
文摘By using the fault tree analysis in reliability theory as the systematical analysis approach, the dust suppression mechanism in a spray system with wetting agent is shown in a logic tree and some graphical models. From these diagrams, all factors related to the spray system and their cause and effect relationship can be seen clearly. Based on the built logic tree, several mathematical models and new ideas for expressing the dust suppressing efficiency in the spray system are put forward. The significance of all factors related to the efficiency of suppressing dust is qualitatively described. Furthermore, the new concepts, such as, the effective reaction time between dust particle and droplet, the expansion phenomenon of laden dust droplet, the functions of volatile and the relative size distribution efficiency of wetting agent are presented. All this richenes the existing mechanism of dust abatement by spraying wetting agent. At last, several problems that need to be further investigated are also suggested in the paper.
基金the NSF of China(Grant No.11074010)the MOST of China(Grant No.2011DFA51450)for financial support
文摘Antibacterial Ag-agents are intensively applied as broad spectrum, high-stability, high-efficiency and high-safety inorganic antibacterial agents. We have developed a new kind of antibacterial Ag-agent, namely Ag_2-x(NH_4)xMo_3O_(10) ·3H_2O nanowires(NWs). Carrying Ag atoms in the lattice and Ag-rich nanoparticles on the surface, the Ag-doped NWs show strong antibacterial effects for a variety of bacteria including E.coli, Staphylococcus aureus, Candida albicans and Aspergil lus niger. By performing systematic comparison experiments, we have proven that the main antibacterial effects are neither resulted from the tiny amount of Ag+ions released from the Ag-doped NWs in aqueous solutions, nor resulted from Ag-rich nanoparticles of fragments of the NWs when they are slowly dissolved in the Martin broth. Instead, the effects are mainly resulted from a contact mechanism, under which, the Ag-doped NWs need to be physically in contact with the bacteria to be eliminated. This is a novel phenomenon observed in the interactions between nanomaterials and live cells, which is worthy of further investigation at the molecular scale. As the Ag-doped NWs are not dissolved in pure water or weak acids, one may find practical antibacterial applications in textile industry and food storage industry for these unique nanomaterials.
基金Supported by National Science and Technology Major Project of China(Grant No.2009ZX04014-103)PhD Programs Foundation of Ministry of Education of China(Grant No.20100072110038)+1 种基金National Natural Science Foundation of China(Grant Nos.61075064,61034004,61005090)Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NECT-10-0633)
文摘The rapid expansion of enterprises makes product collaborative design (PCD) a critical issue under the distributed heterogeneous environment, but as the collaborative task of large-scale network becomes more complicated, neither unified task decomposition and allocation methodology nor Agent-based network management platform can satisfy the increasing demands. In this paper, to meet requirements of PCD for distributed product development, a collaborative design mechanism based on the thought of modularity and the Agent technology is presented. First, the top-down 4-tier process model based on task-oriented modular and Agent is constructed for PCD after analyzing the mapping relationships between requirements and functions in the collaborative design. Second, on basis of sub-task decomposition for PCD based on a mixed method, the mathematic model of task-oriented modular based on multi-objective optimization is established to maximize the module cohesion degree and minimize the module coupling degree, while considering the module executable degree as a restriction. The mathematic model is optimized and simulated by the modified PSO, and the decomposed modules are obtained. Finally, the Agent structure model for collaborative design is put forward, and the optimism matching Agents are selected by using similarity algorithm to implement different task-modules by the integrated reasoning and decision-making mechanism with the behavioral model of collaborative design Agents. With the results of experimental studies for automobile collaborative design, the feasibility and efficiency of this methodology of task-oriented modular and Agent-based collaborative design in the distributed heterogeneous environment are verified. On this basis, an integrative automobile collaborative R&D platform is developed. This research provides an effective platform for automobile manufacturing enterprises to achieve PCD, and helps to promote product numeralization collaborative R&D and management development.
基金Supported by Humanities and Social Sciences Research Project of Ministry of Education(19YJA790053)Hunan Social Science Foundation Project(18YBA244)
文摘Ecological capital operation is a major means for innovation of ecological environment protection,and provides ecological security for sustainable economic and social development.In this paper,key factors for construction of incentive mechanism of ecological capital operation are explored from government cognition,enterprise attitude and public awareness.Via model building and parameter setting,incentive mechanism system of single objective is established effectively,to promote effective realization of regional ecological capital operation.
文摘The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.
基金supported by the Doctoral Initiation Fund Project Grant(BK202315)Medical Research Special Fund(2022YKY17)of Hubei University of Science and TechnologyHubei Provincial Natural Science Foundation Programme(2023AFB537)
文摘T-2 toxin is one of the most widespread and toxic fungal toxins in food and feed.It can cause gastrointestinal toxicity,hepatotoxicity,immunotoxicity,reproductive toxicity,neurotoxicity,and nephrotoxicity in humans and animals.T-2 toxin is physicochemically stable and does not readily degrade during food and feed processing.Therefore,suppressing T-2 toxin-induced organ toxicity through antidotes is an urgent issue.Protective agents against the organ toxicity of T-2 toxin have been recorded widely in the literature,but these protective agents and their molecular mechanisms of detoxification have not been comprehensively summarized.In this review,we provide an overview of the various protective agents to T-2 toxin and the molecular mechanisms underlying the detoxification effects.Targeting appropriate targets to antagonize T-2 toxin toxicity is also an important option.This review will provide essential guidance and strategies for the better application and development of T-2 toxin antidotes specific for organ toxicity in the future.
文摘Both conflict and asymmetric information exist betweenthe telecom operators and the service provider,and result in illegal behaviors of the service provider.The relationship between the telecom operators andthe service provider is classical multi-task principalagentrelationship. The multi-task incentive for theservice provider is considered in the design of theprincipal-agent incentive contract, and it is necessaryto add the multi-task incentive to the serviceproviders through the analysis of the risk costs andthe agency costs of this problem.
文摘The influence of process control agents (PCAs) on the mechanical properties of Ni3AI intermetallic compounds by mechanical alloying was investigated in order to develop oxide deposition reinforced intermetallics. The PCAs in mechanical alloying were pure ligroin, 75 vol.% ligroin + 25 vol.% alcohol, 50 vol.% ligroin + 50 vol.% alcohol, 25 vol.% ligroin + 75 vol.% alcohol, and pure alcohol. The normal composition is Ni-22.9at.%Al-0.5at.%B, the ball-to-powder weight ratio is 10:1, and the milling time is 30 min. Then, the powders were sintered by spark plasma sintering under 40 MPa for 5 min at 1000℃. The results show that a higher bending strength and a higher hardness were obtained when the PCAs were 75% ligroin + 25% alcohol in mechanical alloying. The bending strength is about 2700 MPa and the hardness (HV) is more than 6 GPa.
基金Supported by the High-Level Talent Funding and Construction System of Jiangsu Province(JZ-010,2013ZD12)the China Post-Doctoral Science Foundation(2014M551588,1301057B)the National High-Tech Research and Development Program of China("863"Program)(2009AA03Z508)
文摘Polypropylene fiber and expansive agent are used in airport concrete to improve its shrinkage cracking resistance and mechanical properties.The concrete specimens with amount content of polypropylene fiber or expansive agent or both of them are prepared.The morphology of specimens is observed by scanning electron microscope,the time when the first crack occurred is recorded through slap test,and the mechanical properties such as compressive strength and impact energies of concrete are measured.The results show that polypropylene fiber in concrete can reduce the shrinkage and delay the first crack,improve the impact resistance obviously,and improve the compressive strength slightly.Expansive agent can compensate the shrinkage and reduce cracks of concrete pavement markedly,and improve the mechanical properties of concrete pavement slightly.The study provides recommendations for cracking control of airport concrete pavement in the future.
基金Supported by The grant from the National Institutes of Health,Martin Delaney Collaboratory of AIDS Researchers for Eradication(CARE,U19 AI 096113)the Swiss National Science Foundation(grant 31003A_146579)the University of California,San Diego Fellowships for Graduate Researchers,Frontiers of Innovation Scholars Program
文摘Eradication of human immunodeficiency virus(HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency biomarkers and a better understanding of the molecular mechanisms contributing to regulation of HIV expression might provide essential tools to eliminate these latently infected cells. This review aims at summarizing gene expression profiling and systems biology applications to studies of HIV latency and eradication. Studies comparing gene expression in latently infected and uninfected cells identify candidate latency biomarkers and novel mechanisms of latency control. Studies that profiled gene expression changes induced by existing latency reversing agents(LRAs) highlight uniting themes driving HIV reactivation and novel mechanisms that contribute to regulation of HIV expression by different LRAs. Among the reviewed gene expression studies, the common approaches included identification of differentially expressed genes and gene functional category assessment. Integration of transcriptomic data with other biological data types is presently scarce, and the field would benefit from increased adoption of these methods in future studies. In addition, designing prospective studies that use the same methods of data acquisition and statistical analyses will facilitate a more reliableidentification of latency biomarkers using different model systems and the comparison of the effects of different LRAs on host factors with a role in HIV reactivation. The results from such studies would have the potential to significantly impact the process by which candidate drugs are selected and combined for future evaluations and advancement to clinical trials.