期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ageing and performance of warm mix asphalt pavements 被引量:2
1
作者 Christiane Raab Ingrid Camargo Manfred N.Partl 《Journal of Traffic and Transportation Engineering(English Edition)》 2017年第4期388-394,共7页
This paper presents results from investigating the ageing behaviour and performance of different warm mix asphalt (WMA) pavement mixtures also called energy reduced pavements. The mixtures were either prepared in th... This paper presents results from investigating the ageing behaviour and performance of different warm mix asphalt (WMA) pavement mixtures also called energy reduced pavements. The mixtures were either prepared in the laboratory or taken directly from a mixing plant. The study compared the rutting and fatigue behaviours of unaged material in comparison to long term laboratory aged material. In order to conduct the long term ageing, a special laboratory ageing protocol with different heating, cooling and watering cycles had been developed. The investigation revealed a quite controversial rutting behavior which could not be explained with the available data. While most aged energy reduced pavements showed increased rutting for other mixtures, lower rut depths could be found. As opposed to this finding, fatigue and stiffness of all aged energy reduced pave- ment samples compared to unaged samples improved significantly. The overall results led to the conclusion that the ageing of energy reduced pavement simulated in the laboratory is not very critical regarding their mechanical performance. Therefore, it was confrmed that the application of this type of pavement provides a good solution for saving on CO2 emissions. Another advantage is that by using energy reduced pavements the road con- struction season can be significantly prolonged. 展开更多
关键词 Warm mix asphalt (WMA)CO2 emissions saving Ageing Long term performance Rutting Fatigue
原文传递
Microstructure,Mechanical Properties and Corrosion Behavior of Extruded Mg–Zn–Ag Alloys with Single-Phase Structure 被引量:4
2
作者 Hong Zhao Li-Qing Wang +3 位作者 Yu-Ping Ren Bo Yang Song Li Gao-Wu Qin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第6期575-583,共9页
Mg–Zn–Ag alloys have been extensively studied in recent years for potential biodegradable implants due to their unique mechanical properties,biodegradability and biocompatibility.In the present study,Mg–3Zn-x Ag(w... Mg–Zn–Ag alloys have been extensively studied in recent years for potential biodegradable implants due to their unique mechanical properties,biodegradability and biocompatibility.In the present study,Mg–3Zn-x Ag(wt%,x=0.2,0.5 and0.8)alloys with single-phase crystal structure were prepared by backward extrusion at 340°C.The addition of Ag element into Mg–3Zn slightly influences the ultimate tensile strength and microstructure,but the elongation firstly increases from12%to 19.8%and then decreases from 19.8%to 9.9%with the increment of Ag concentration.The tensile yield strength,ultimate tensile strength and elongation of Mg–3Zn–0.2Ag alloy reach up to 142,234 MPa and 19.8%,respectively,which are the best mechanical performance of Mg–Zn–Ag alloys in the present work.The extruded Mg–3Zn–0.2Ag alloy also possesses the best corrosion behavior with the corresponding corrosion rate of 3.2 mm/year in immersion test,which could be explained by the single-phase and uniformly distributed grain structure,and the fewer twinning. 展开更多
关键词 Mg–Zn–Ag Single phase Backward extrusion Mechanical performance Corrosion behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部