The microstructure, fracture morphology and mechanical properties of Al-10 Si alloy modified with Al-5 Ti were analyzed and tested by optical microscopy, scanning electron microscopy, and universal electronic testing ...The microstructure, fracture morphology and mechanical properties of Al-10 Si alloy modified with Al-5 Ti were analyzed and tested by optical microscopy, scanning electron microscopy, and universal electronic testing machine. Compared with unmodified Al-10 Si alloy, the area fraction of α-Al phase in Al-10 Si alloy modified at 740 °C increased first and then decreased with the increase of added amounts of Al-5 Ti, and reached the maximum when the added amount of Al-5 Ti was 0.5 wt.%. When the modification temperature increased from 700 to 740 °C with Al-5 Ti being fixed at 0.5 wt.%, α-Al dendrites were refined obviously and the area fraction remarkably increased. Compared with unmodified Al-10 Si alloy, the ultimate tensile strength and elongation of the alloy modified at 740 °C with 0.5 wt.% Al-5 Ti increased by 9% and 49%, respectively. The fracture surface of modified alloy predominantly exhibited ductile fracture.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51571039)
文摘The microstructure, fracture morphology and mechanical properties of Al-10 Si alloy modified with Al-5 Ti were analyzed and tested by optical microscopy, scanning electron microscopy, and universal electronic testing machine. Compared with unmodified Al-10 Si alloy, the area fraction of α-Al phase in Al-10 Si alloy modified at 740 °C increased first and then decreased with the increase of added amounts of Al-5 Ti, and reached the maximum when the added amount of Al-5 Ti was 0.5 wt.%. When the modification temperature increased from 700 to 740 °C with Al-5 Ti being fixed at 0.5 wt.%, α-Al dendrites were refined obviously and the area fraction remarkably increased. Compared with unmodified Al-10 Si alloy, the ultimate tensile strength and elongation of the alloy modified at 740 °C with 0.5 wt.% Al-5 Ti increased by 9% and 49%, respectively. The fracture surface of modified alloy predominantly exhibited ductile fracture.