In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick pl...In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.展开更多
The hot deformation behavior of as-solutionized Mg 8Sn 2Zn 0.5Cu(TZC820)alloy was investigated experimentally and numerically via isothermal compression tests at 250400℃and strain rate range of 0.013 s 1 on a Gleeble...The hot deformation behavior of as-solutionized Mg 8Sn 2Zn 0.5Cu(TZC820)alloy was investigated experimentally and numerically via isothermal compression tests at 250400℃and strain rate range of 0.013 s 1 on a Gleeble 1500D thermomechanical simulator.Results show that the deformation temperature and strain rate signi cantly affected ow stress and material constants.In addition,the strain-compensated constitutive relationship was established on the basis of true stress strain curves.The main deformation mechanism for this alloy was the dynamic recrystallization(DRX),and the DRX degree was effectively enhanced with an increase in deformation temperature and a decrease in strain rate.Moreover,the cellular automaton method was used to simulate the microstructure evolution during hot compression.In addition,the processing maps were established,and the optimum deformation parameters for the as-solutionized TZC820 alloy are at 370400℃and 0.01 s 1,and at 320360℃and 13 s 1.展开更多
基金Project(51801082) supported by National Natural Science Foundation of ChinaProjects(GY2021003, GY2021020)supported by the Key Research and Development Program of Zhenjiang City,China+1 种基金Project(KYCX21_3453) supported by Graduate Research and Innovation Projects in Jiangsu Province,ChinaProject(202110289002Z) supported by Undergraduate Innovation and Entrepreneurship Training Program of Jiangsu Province,China。
文摘In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.
基金Project(2019YJ0478) supported by Sichuan Science and Technology Program,ChinaProjects(2017RCL18,2017RCL35) supported by the Research Foundation for the Introduction of Talent of Sichuan University of Science and Engineering,ChinaProjects(2017CL06,2018CL06) supported by the Opening Program of Material Corrosion and Protection Key Laboratory of Sichuan Province,China
文摘The hot deformation behavior of as-solutionized Mg 8Sn 2Zn 0.5Cu(TZC820)alloy was investigated experimentally and numerically via isothermal compression tests at 250400℃and strain rate range of 0.013 s 1 on a Gleeble 1500D thermomechanical simulator.Results show that the deformation temperature and strain rate signi cantly affected ow stress and material constants.In addition,the strain-compensated constitutive relationship was established on the basis of true stress strain curves.The main deformation mechanism for this alloy was the dynamic recrystallization(DRX),and the DRX degree was effectively enhanced with an increase in deformation temperature and a decrease in strain rate.Moreover,the cellular automaton method was used to simulate the microstructure evolution during hot compression.In addition,the processing maps were established,and the optimum deformation parameters for the as-solutionized TZC820 alloy are at 370400℃and 0.01 s 1,and at 320360℃and 13 s 1.