Solution and aging treatments are important approaches to improve mechanical properties and microstructure of aluminum-base alloys. In this research, a new type high strength AI-Cu-Si-Mn cast alloy was prepared. The e...Solution and aging treatments are important approaches to improve mechanical properties and microstructure of aluminum-base alloys. In this research, a new type high strength AI-Cu-Si-Mn cast alloy was prepared. The effect of different solution and aging treatment temperatures on microstructure and mechanical properties of the AI-Cu-Si-Mn cast alloy were studied by means of microstructure observation and mechanical properties testing. Results showed that after solution treated at different temperatures for 12 h and aged at 175 ℃ for 12 h, with the increase of the solution temperature, both the tensile strength and the elongation of the alloy firstly increase and then decrease, and reach their peak values at 530 ℃. When the solution temperature is below 530 ℃, the microstructure of the alloy consists of a phase, undissolved e phase and T phase; while when it exceeds 530 ℃, the microstructure only consists of cr phase and T phase. After solution treated at 530 ℃ for 12 h and aged at different temperatures for 12 h, both the tensile strength and the elongation of the alloy firstly increase and then decrease with the increasing of temperature, and reach their peak values at 175 ℃. Therefore, the optimal heat treatment process for the alloy in this study is 12 h solution at 530 ℃ and 12 h aging at 175 ℃, and the corresponding tensile strength is 417 MPa, elongation is 4.0%.展开更多
通过拉伸和埃里克森实验以及扫描电镜/能谱、透射电镜和金相分析,研究Mn的质量分数对Al Mg Si Cu铝合金汽车板显微组织、力学性能和成形性的影响·研究表明,随Mn质量分数增加,Al Mg Si Cu汽车板铝合金不可溶结晶相及弥散相粒子数量...通过拉伸和埃里克森实验以及扫描电镜/能谱、透射电镜和金相分析,研究Mn的质量分数对Al Mg Si Cu铝合金汽车板显微组织、力学性能和成形性的影响·研究表明,随Mn质量分数增加,Al Mg Si Cu汽车板铝合金不可溶结晶相及弥散相粒子数量均增加,不可溶结晶相使合金组织纤维化对板材冲压成形性不利,弥散相粒子阻碍再结晶晶粒长大;提高Mn的质量分数,Al Mg Si Cu汽车板铝合金的强度增加,但延伸率和冲压成形性降低·展开更多
The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of ...The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of fine needle-like RE-rich phases are observed in the alloys with RE addition. Solutionizing treatment does not change their morphologies and sizes, indicating that they have good thermal stability. The addition of RE totally alters the solidification process of eutectic CruAl2 phase, from network-like phase in the form of segregation at the final eutectic grain boundaries to discretely blocky phase growing on the hair-filamentous RE-rich needles. In the alloys with Ce addition, blocky CuAl2, particulate Al15Mn3Si2 and needle-like RE-rich needle phases grow together, but they did not occur in the alloy with only La addition. The addition of RE does not considerably improve the strength of the alloy at high temperatures. The formation of RE-rich phases also does not significantly alter the originating and propagating of micro-cracks in the alloy during tensile test.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51371133)
文摘Solution and aging treatments are important approaches to improve mechanical properties and microstructure of aluminum-base alloys. In this research, a new type high strength AI-Cu-Si-Mn cast alloy was prepared. The effect of different solution and aging treatment temperatures on microstructure and mechanical properties of the AI-Cu-Si-Mn cast alloy were studied by means of microstructure observation and mechanical properties testing. Results showed that after solution treated at different temperatures for 12 h and aged at 175 ℃ for 12 h, with the increase of the solution temperature, both the tensile strength and the elongation of the alloy firstly increase and then decrease, and reach their peak values at 530 ℃. When the solution temperature is below 530 ℃, the microstructure of the alloy consists of a phase, undissolved e phase and T phase; while when it exceeds 530 ℃, the microstructure only consists of cr phase and T phase. After solution treated at 530 ℃ for 12 h and aged at different temperatures for 12 h, both the tensile strength and the elongation of the alloy firstly increase and then decrease with the increasing of temperature, and reach their peak values at 175 ℃. Therefore, the optimal heat treatment process for the alloy in this study is 12 h solution at 530 ℃ and 12 h aging at 175 ℃, and the corresponding tensile strength is 417 MPa, elongation is 4.0%.
文摘通过拉伸和埃里克森实验以及扫描电镜/能谱、透射电镜和金相分析,研究Mn的质量分数对Al Mg Si Cu铝合金汽车板显微组织、力学性能和成形性的影响·研究表明,随Mn质量分数增加,Al Mg Si Cu汽车板铝合金不可溶结晶相及弥散相粒子数量均增加,不可溶结晶相使合金组织纤维化对板材冲压成形性不利,弥散相粒子阻碍再结晶晶粒长大;提高Mn的质量分数,Al Mg Si Cu汽车板铝合金的强度增加,但延伸率和冲压成形性降低·
基金Project(BM2007204)supported by the Jiangsu Key Laboratory of Advanced Metallic Materials,ChinaProject(2242016K40011)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of fine needle-like RE-rich phases are observed in the alloys with RE addition. Solutionizing treatment does not change their morphologies and sizes, indicating that they have good thermal stability. The addition of RE totally alters the solidification process of eutectic CruAl2 phase, from network-like phase in the form of segregation at the final eutectic grain boundaries to discretely blocky phase growing on the hair-filamentous RE-rich needles. In the alloys with Ce addition, blocky CuAl2, particulate Al15Mn3Si2 and needle-like RE-rich needle phases grow together, but they did not occur in the alloy with only La addition. The addition of RE does not considerably improve the strength of the alloy at high temperatures. The formation of RE-rich phases also does not significantly alter the originating and propagating of micro-cracks in the alloy during tensile test.