Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of...Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of CaO-SiO2 slag for boron removal was characterized by establishing the thermodynamic relationship between the distribution coefficient of boron (LB) and the activities of SiO2 and CaO. The experimental results show that the distribution coefficient and the removal efficiency of boron are greatly improved with the increase of CaO proportion in the slag. The maximal value of LB reaches 1.57 with a slag composition of 60%CaO-40%SiO2 (mass fraction). The boron content in the refined silicon is reduced from 18×10^-6 to 1.8×10^-6 using slag refining at 1600 ℃ for 3 h with a CaO-SiO2/MG-Si ratio of 2.5, and the removal efficiency of boron reaches 90%.展开更多
Controlling conditions for inclusion plasticization were calculated by FactSage, and the steel/slag reaction equilibration time was determined by pre-equilibrium experiments. Laboratory experiments with different top ...Controlling conditions for inclusion plasticization were calculated by FactSage, and the steel/slag reaction equilibration time was determined by pre-equilibrium experiments. Laboratory experiments with different top slags were carried out in 90 rain, and industrial tests were performed based on the results of calculation and laboratory experiments. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to determine the morphology and composition of inclusions in tire cord steel. It is found that the shape of in- clusions can be controlled well, and the composition of inclusions varies in the industrial test as the following transformation route: MnO-A1EOa-SiO2→CaO-AIEOa-SiO2→MnO-A1203-SiO2. Inclusion plasticization can be achieved by controlling the binary basicity of top slag (CaO/SiO2 by mass) around 1.0 and the (A1203) content in top slag below 10wt%. Under these controlling conditions in the industrial test, almost all of inclusions in the wire rods achieve plastic deformation.展开更多
The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity (Cs) of the sl...The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity (Cs) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (Ls). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5-5.0 and the Al2O3 content in the range of 20wt%-25wt% has high activity of CaO (αCaO), with no deterioration of Cs compared with conventional desulfurization slag. The measured Ls between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5-5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.展开更多
The experimental research on refining slag systems for ultra-low sulphur steel was carried out in a 10 kg induction furnace.It was proved that sulphur element in molten steel can be removed to less than 5×10^(-6)...The experimental research on refining slag systems for ultra-low sulphur steel was carried out in a 10 kg induction furnace.It was proved that sulphur element in molten steel can be removed to less than 5×10^(-6) by adding CaO-Al_2O_3-SiO_2-MgO-CaF_2 slag on the surface of molten steel and feeding CaO-BaO-CaF2 wire into molten steel.And L_s,which is the coefficient of sulphur between slag and molten steel,that is ω(s)/ω[s],increases by increasing I(I = ωBaO/ωCaO).When I=5/3,L_s can be up to its maximum of 633.The CaSi is effective for deep desulphurization,especially when it is added to the slag of wire feeding.展开更多
The equilibrium reaction between CaO-Al2O3-SiO2-MgO slag and 28MnCr5 molten steel was calculated to obtain the suitable slag composition which is effective for decreasing the oxygen content in molten steel. The dissol...The equilibrium reaction between CaO-Al2O3-SiO2-MgO slag and 28MnCr5 molten steel was calculated to obtain the suitable slag composition which is effective for decreasing the oxygen content in molten steel. The dissolved oxygen content [O] in molten steel un- der different top slag conditions was calculated using a thermodynamic model and was measured using an electromotive force method in slag-steel equilibrium experiments at 1873 K. The relations among [O], the total oxygen content (T.O), and the composition of the slag were investigated. The experimental results show that both [O] and T.O decrease with decreasing SiO2 content of the slag and exhibit different trends with the changes in the CaO/Al2O3 mass ratio of the slag. Increasing the CaO/Al2O3 mass ratio results in a decrease in [O] and an in- crease in T.O. To ensure that T.O ≤ 20 ppm and [O] ≤ 10 ppm, the SiO2 content should be controlled to 〈5wt%, and the CaO/AI203 mass ratio should be in the range from 1.2 to 1.6.展开更多
To avoid slag sticking on the ladle immersion cover during the LATS refining and alloying process, the effect of Al2O3 on the melting point of the ladle slag was studied and the additives including CaF2, B2O3, Li2O, a...To avoid slag sticking on the ladle immersion cover during the LATS refining and alloying process, the effect of Al2O3 on the melting point of the ladle slag was studied and the additives including CaF2, B2O3, Li2O, and CaO were used to decrease the melting point of the ladle slag. The melting point was measured using the hemisphere method. The results show that the addition of Al2O3 to the ladle slag increases the melting point. The fluxing action is not remarkable if only CaF2 or CaO is used as the additive. The fluxing action of the composite additive obtained by the mixing of CaO and CaF2 in the mass proportion of ωCaO:ωCaF2=2 : 1 is preferred. The fluxing action of B2O3 is also notable. When the B2O3 content in mass percent is in the range from 2% to 10%, the corresponding melting point is 1 380 ℃ to 1 290℃. The fluxing action of Li2O is the most remarkable. When the Li2O content is up to 5%, the melting point of the slag is lower than 1 300 ℃.展开更多
In view of the present problem of sulfur enrichment in the metallurgical recycling process of ladle furnace (LF) refining slag, a simple and efficient method of removing sulfur from this slag was proposed. The propo...In view of the present problem of sulfur enrichment in the metallurgical recycling process of ladle furnace (LF) refining slag, a simple and efficient method of removing sulfur from this slag was proposed. The proposed method is compatible with current steelmaking processes. Sulfur removal from LF refining slag for SPHC steel (manufactured at a certain steel plant in China) by blowing air in the hot state was studied by using hot-state experiments in a laboratory. The FactSage software, a carbon/sulfur analyzer, and scanning electron micros- copy in conjunction with energy-dispersive X-ray spectroscopy were used to test and analyze the sulfur removal effect and to investigate factors influencing sulfur removal rate. The results show that sulfur ions in LF refining slag can be oxidized into SO2 by O2 at high tempera- ture by blowing air into molten slag; SO2 production was observed to reach a maximum with a small amount of blown O2 when the tem- perature exceeded 1350℃. At 1370℃ and 1400℃, experimental LF refining slag is in the liquid state and exhibits good fluidity; under these conditions, the sulfur removal effect by blowing air is greater than 90wt% after 60 min. High temperature and large air flow rate are benefi- cial for removing sulfur from LF refining slag; compared with air flow rate, temperature has a greater strongly influences on the sulfur re- moval.展开更多
The desulfurization characteristics of CaO-SiO2-BaO-CaF2-Al2O3-MgO refining slag were studied in laboratory with the methodology of orthogonal design. The influence of basicity, Al2O3, MgO, BaO and CaF2 contents in sl...The desulfurization characteristics of CaO-SiO2-BaO-CaF2-Al2O3-MgO refining slag were studied in laboratory with the methodology of orthogonal design. The influence of basicity, Al2O3, MgO, BaO and CaF2 contents in slag on the desulfurization rate was analyzed and the optimum composition of refining slag was determined.展开更多
Corrosion resistance and penetration resistance of MgO-CaO materials with different CaO contents (22%, 42%, 49%, 53%, in mass)to refining AOD slag or VOD slag were investigated using static crucible technique by vis...Corrosion resistance and penetration resistance of MgO-CaO materials with different CaO contents (22%, 42%, 49%, 53%, in mass)to refining AOD slag or VOD slag were investigated using static crucible technique by visual observation, SEM and XRD. The corrosion resistance and penetration resistance of speci-mens decrease with the increase of CaO content. This may be caused by the formation of C3S and C2S during the reactions between specimens and the slag. The formed C3S and C2S can restrain the further penetration to the matrix. The higher the CaO content, the more the C2S or C3S formed, the lower the porosity of the speci-mens, and the lower the penetration depth and corrosion rate. The corrosion resistance to AOD slag is better than that to VOD slag, because the reaction between AOD slag and the matrix is slighter than that between VOD slag and the matrix.展开更多
To investigate the dissolution behaviors of Al_(2)O_(3)inclusions in CaO-5wt%MgO-SiO_(2)-30wt%Al_(2)O_(3)-TiO_(2)system ladle slags,confocal scanning laser microscopy was conducted on the slags with different TiO_(2)c...To investigate the dissolution behaviors of Al_(2)O_(3)inclusions in CaO-5wt%MgO-SiO_(2)-30wt%Al_(2)O_(3)-TiO_(2)system ladle slags,confocal scanning laser microscopy was conducted on the slags with different TiO_(2)contents(0-10wt%),and scanning electron microscopy was performed to study the interfacial reaction between Al_(2)O_(3)and this slag system.The results disclose that the dissolution of Al_(2)O_(3)inclusions does not result in the formation of new phases at the boundary between the slag and the inclusions.In TiO_(2)-bearing and TiO_(2)-free ladle slags,there is no difference in the dissolution mechanism of Al_(2)O_(3)inclusions at steelmaking temperatures.Boundary layer diffusion is found as the controlling step of the dissolution of Al_(2)O_(3),and the diffusion coefficient is in the range of 4.18×10^(-10)to 2.18×10^(-9)m^(2)/s at 1450-1500℃.Compared with the solubility of Al_(2)O_(3)in the slags,slag viscosity and temperature play a more profound role in the dissolution of Al_(2)O_(3)inclusions.A lower viscosity and a lower melting point of the slags are beneficial for the dissolution.Suitable addition of TiO_(2)(e.g.,5wt%)in ladle slags can enhance the dissolution of Al_(2)O_(3)inclusions because of the low viscosity and melting point of the slags,while excessive addition of TiO_(2)(e.g.,10wt%)shows the opposite trend.展开更多
The experiments on the foaminess of the CaO-MgO-Al2O3 -SiO2 -CaF2 refining slag system have been carried out. The obtained results are as followst (1) relative foaming height linearly increases with the increasing of ...The experiments on the foaminess of the CaO-MgO-Al2O3 -SiO2 -CaF2 refining slag system have been carried out. The obtained results are as followst (1) relative foaming height linearly increases with the increasing of the flowrate of blowing gas; (2) the proper content of MgO is about 11% when slag basicity B<2.5 and it should lower when slag basicity will be higher; (3) the better content of Al2O3, (MgO)+(Al2O3 ) is 15% and 20 % ~ 26 % respectively at the range of lower basicities; (4) the effect of slag basicity on the foaminess is complex and its optimizing vaiue is 1.9 at the specific contents of MgO, Al2O3 and CaF2.展开更多
To reduce the slag sticking onto the snorkel of the ladle during the ladle alloying treatment station (LATS) process, CaO- CaF2 (the mass ratio of CaO/CaF2 is 1:1) was employed as the modifier of the LATS refinin...To reduce the slag sticking onto the snorkel of the ladle during the ladle alloying treatment station (LATS) process, CaO- CaF2 (the mass ratio of CaO/CaF2 is 1:1) was employed as the modifier of the LATS refining ladle slag. The effect of CaO-CaF2 on the melting point, viscosity, and desulfurizing capability of the ladle slag was investigated. The melting point of the unmodified ladle slag is 1439℃. When adding 20wt% CaO-CaF2, the melting point is decreased to 1327℃. At 1500℃. the viscosity of the unmodified ladle slag is 6.5 Pa.s, which can be decreased lower than 2 Pa.s by adding more than 10wt% CaO-CaF2. The experimental results of desulfu- rization of the melts show that the desulfurizing power of the ladle slag can be enhanced by adding CaO-CaF2.展开更多
The foaming indexes of a group of refining slag were measured. The refining slag with better foaming ability was chosen,its composition (mass frachon in %) is CaO, 53.25, SiO2, 17.75, MgO, 9; Al2O3, 15 and CaF2, 5. Th...The foaming indexes of a group of refining slag were measured. The refining slag with better foaming ability was chosen,its composition (mass frachon in %) is CaO, 53.25, SiO2, 17.75, MgO, 9; Al2O3, 15 and CaF2, 5. The relationship between slag foaming index and physical properties of the slag was obtained by dimensional analysis, and the expression indicates that viscosity of slag is the most important factor which influences foamng index. The influence sequence of slap composition on foaming index was also obtained as follows: CaF2→MgO→Al2O3→ B (CaO/SiO2).展开更多
According to the coexistence theory of slag structure melts, the oxidizing capability of the refining slag CaO-MgO-FeO- A12O3SiO2 is studied and the relationship between the mass action concentration of FeO (NFeO) and...According to the coexistence theory of slag structure melts, the oxidizing capability of the refining slag CaO-MgO-FeO- A12O3SiO2 is studied and the relationship between the mass action concentration of FeO (NFeO) and the activity of FetO (αFetO) for this slag is found to be as NFeo=0.656 1 αFetO. Furthermore, the calculating model of oxidizing capability of the refining slag BaO-CaO-MgO- FeOA12O3-SiO2 is established. A satisfactory result is obtained when using the above oxidizing capability relationship to calculate the desulphurizing capability of such refining BaO-slags.展开更多
Laboratory study; was carried out on deep desulfurization of molten steel by CaO-Al2O3 based refining slag containing BaO at 1873K to achieve lower sulphur level in steel. A mathematical model of desulfurization was e...Laboratory study; was carried out on deep desulfurization of molten steel by CaO-Al2O3 based refining slag containing BaO at 1873K to achieve lower sulphur level in steel. A mathematical model of desulfurization was established with the methodology of quadratic orthogohal regression. According to the modle, the influence of AlO3/CaO, MgO, CaF2, BaO in slag on desulfurization rate was analyzed. The results showed that the desulfurization rate almost linearly decreased with the increase of Al2O3/CaO and it increased firstly then decreased when MgO and BaO content increased respectixely, yet the trend is on the contrary as CaF2 content increased. Based on the comprehensive analysis, the optimum composition of the refining slag was achieved under the experimental conditions.展开更多
The physical property of transformed RE enriched slag is determined and the results show that when REO is within the range of 10% to 30%, the fusibility temperature of the slag is blast furnace smelting for the fusibi...The physical property of transformed RE enriched slag is determined and the results show that when REO is within the range of 10% to 30%, the fusibility temperature of the slag is blast furnace smelting for the fusibility temperature under 1220 degrees C and the basicity is from 1.0 to 2.5, it does not cause difficulties for fusibiliy temperature under 1300 degrees C; and at a temperature from 1300 degrees C to 1500 degrees C the viscosity is below 5 Pa. s. Through adjusting CaF2 content in the slag, the property of slag can be improved.展开更多
Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time larg...Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time largely affected non-metallic inclusions.With the reaction time increased from 30 min to 90 min in laboratory study,MgO-Al_2O_3 spinels were gradually changed into CaO-MgO-Al_2O_3 system inclusions surrounded by softer CaO-Al_2O_3 surface layers.By using high basicity slag which contained as much as 41%Al_2O_3 in the laboratory study,ratio of low melting temperature CaO-MgO-Al_2O_3 system inclusions was remarkably increased to above 80%.In the industrial experiment,during the secondary refining,the inclusions changed in order of 'Al_2O_3→MgO-Al_2O_3→CaO-MgO-Al_2O_3'.Through the LF and RH refining,most inclusions could be transferred to lower melting temperature CaO-Al_2O_3 and CaO-MgO-Al_2O_3 system inclusions.展开更多
The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhi...The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite,MgO-ZrO2 composite,and MgO-MgAl2O4-ZrO2 composite.On the basis of the microstructural analysis and mechanisms calculations,the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure,which helps protect the high activity of ZrO2.When in contact with the slag,ZrO2 reacts with CaO to form the stable phase CaZrO3,which protects MgAl2O4 against corrosion,thereby enhancing the corrosion resistance of the composite.展开更多
The dissolution kinetics of Al_(2)O_(3) in CaO-Al_(2)O_(3) SiOslags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K.The results show that the controlling step during the Al_(2...The dissolution kinetics of Al_(2)O_(3) in CaO-Al_(2)O_(3) SiOslags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K.The results show that the controlling step during the Al_(2)O_(3) dissolution was the diffusionin molten slag.It was found that the dissolution curves of Al_(2)O_(3) particles were hardly agreed with the traditional boundary layer diffusion model with the increase of the CaO/Al_(2)O_(3) ratio of slag.A modified diffusion equation considering slag viscosity was developed to study the dissolution mechanism of Al_(2)O_(3) in slag.Diffusion coefficients of Al_(2)O_(3) in slag were calculated as 2.8×10to 4.1×10m~2/s at the temperature of 1773-1873 K.The dissolution rate of Al_(2)O_(3) increased with higher temperature,CaO/Al_(2)O_(3),and particle size.A new model was shown to be v_(Al_(2)O_(3))=0.16×r_(0)^(1.58)×x^(3.52)×(T-T_(mp))^(1.11)to predict the dissolution rate and the total dissolution time of Al_(2)O_(3) inclusions with various sizes,where vAl_(2)O_(3) is the dissolution rate of Al_(2)O_(3) in volume,μm^(3)/s;x is the value of CaO/Al_(2)O_(3) mass ratio;R_(0) is the initial radius of Al_(2)O_(3),μm;T is the temperature,K;T_(mp) is the melting point of slag,K.展开更多
基金Projects (51104080,u1137601) supported by the National Natural Science Foundation of ChinaProject (14118557) supported by the Personnel Training Foundation of Kunming University of Science and Technology in China
文摘Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of CaO-SiO2 slag for boron removal was characterized by establishing the thermodynamic relationship between the distribution coefficient of boron (LB) and the activities of SiO2 and CaO. The experimental results show that the distribution coefficient and the removal efficiency of boron are greatly improved with the increase of CaO proportion in the slag. The maximal value of LB reaches 1.57 with a slag composition of 60%CaO-40%SiO2 (mass fraction). The boron content in the refined silicon is reduced from 18×10^-6 to 1.8×10^-6 using slag refining at 1600 ℃ for 3 h with a CaO-SiO2/MG-Si ratio of 2.5, and the removal efficiency of boron reaches 90%.
基金supported by the Major State Basic Research and Development Program of China (No.2010CB30806)
文摘Controlling conditions for inclusion plasticization were calculated by FactSage, and the steel/slag reaction equilibration time was determined by pre-equilibrium experiments. Laboratory experiments with different top slags were carried out in 90 rain, and industrial tests were performed based on the results of calculation and laboratory experiments. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to determine the morphology and composition of inclusions in tire cord steel. It is found that the shape of in- clusions can be controlled well, and the composition of inclusions varies in the industrial test as the following transformation route: MnO-A1EOa-SiO2→CaO-AIEOa-SiO2→MnO-A1203-SiO2. Inclusion plasticization can be achieved by controlling the binary basicity of top slag (CaO/SiO2 by mass) around 1.0 and the (A1203) content in top slag below 10wt%. Under these controlling conditions in the industrial test, almost all of inclusions in the wire rods achieve plastic deformation.
基金financially supported by the National Basic Research Program of China (No. 2010CB630806)the State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing (No. 41603015)
文摘The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity (Cs) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (Ls). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5-5.0 and the Al2O3 content in the range of 20wt%-25wt% has high activity of CaO (αCaO), with no deterioration of Cs compared with conventional desulfurization slag. The measured Ls between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5-5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.
基金Item Sponsored by National Key Fundamental Research Development Project of China(G1998061500)
文摘The experimental research on refining slag systems for ultra-low sulphur steel was carried out in a 10 kg induction furnace.It was proved that sulphur element in molten steel can be removed to less than 5×10^(-6) by adding CaO-Al_2O_3-SiO_2-MgO-CaF_2 slag on the surface of molten steel and feeding CaO-BaO-CaF2 wire into molten steel.And L_s,which is the coefficient of sulphur between slag and molten steel,that is ω(s)/ω[s],increases by increasing I(I = ωBaO/ωCaO).When I=5/3,L_s can be up to its maximum of 633.The CaSi is effective for deep desulphurization,especially when it is added to the slag of wire feeding.
基金financially supported by the Program for New Century Excellent Talents in Universities of China(No.NCET-07-0650)
文摘The equilibrium reaction between CaO-Al2O3-SiO2-MgO slag and 28MnCr5 molten steel was calculated to obtain the suitable slag composition which is effective for decreasing the oxygen content in molten steel. The dissolved oxygen content [O] in molten steel un- der different top slag conditions was calculated using a thermodynamic model and was measured using an electromotive force method in slag-steel equilibrium experiments at 1873 K. The relations among [O], the total oxygen content (T.O), and the composition of the slag were investigated. The experimental results show that both [O] and T.O decrease with decreasing SiO2 content of the slag and exhibit different trends with the changes in the CaO/Al2O3 mass ratio of the slag. Increasing the CaO/Al2O3 mass ratio results in a decrease in [O] and an in- crease in T.O. To ensure that T.O ≤ 20 ppm and [O] ≤ 10 ppm, the SiO2 content should be controlled to 〈5wt%, and the CaO/AI203 mass ratio should be in the range from 1.2 to 1.6.
基金Item Sponsored by National Natural Science Foundation of China (50474037) Natural Science Foundation of Jiangsu Higher Education Institutions of China (04KJB430022 ,05KJD450043)
文摘To avoid slag sticking on the ladle immersion cover during the LATS refining and alloying process, the effect of Al2O3 on the melting point of the ladle slag was studied and the additives including CaF2, B2O3, Li2O, and CaO were used to decrease the melting point of the ladle slag. The melting point was measured using the hemisphere method. The results show that the addition of Al2O3 to the ladle slag increases the melting point. The fluxing action is not remarkable if only CaF2 or CaO is used as the additive. The fluxing action of the composite additive obtained by the mixing of CaO and CaF2 in the mass proportion of ωCaO:ωCaF2=2 : 1 is preferred. The fluxing action of B2O3 is also notable. When the B2O3 content in mass percent is in the range from 2% to 10%, the corresponding melting point is 1 380 ℃ to 1 290℃. The fluxing action of Li2O is the most remarkable. When the Li2O content is up to 5%, the melting point of the slag is lower than 1 300 ℃.
基金supported by China Postdoctoral Science Foundation (Nos. 2014M560890 and 2015T80039)the National Natural Science Foundation of China (No. 51404022)
文摘In view of the present problem of sulfur enrichment in the metallurgical recycling process of ladle furnace (LF) refining slag, a simple and efficient method of removing sulfur from this slag was proposed. The proposed method is compatible with current steelmaking processes. Sulfur removal from LF refining slag for SPHC steel (manufactured at a certain steel plant in China) by blowing air in the hot state was studied by using hot-state experiments in a laboratory. The FactSage software, a carbon/sulfur analyzer, and scanning electron micros- copy in conjunction with energy-dispersive X-ray spectroscopy were used to test and analyze the sulfur removal effect and to investigate factors influencing sulfur removal rate. The results show that sulfur ions in LF refining slag can be oxidized into SO2 by O2 at high tempera- ture by blowing air into molten slag; SO2 production was observed to reach a maximum with a small amount of blown O2 when the tem- perature exceeded 1350℃. At 1370℃ and 1400℃, experimental LF refining slag is in the liquid state and exhibits good fluidity; under these conditions, the sulfur removal effect by blowing air is greater than 90wt% after 60 min. High temperature and large air flow rate are benefi- cial for removing sulfur from LF refining slag; compared with air flow rate, temperature has a greater strongly influences on the sulfur re- moval.
文摘The desulfurization characteristics of CaO-SiO2-BaO-CaF2-Al2O3-MgO refining slag were studied in laboratory with the methodology of orthogonal design. The influence of basicity, Al2O3, MgO, BaO and CaF2 contents in slag on the desulfurization rate was analyzed and the optimum composition of refining slag was determined.
文摘Corrosion resistance and penetration resistance of MgO-CaO materials with different CaO contents (22%, 42%, 49%, 53%, in mass)to refining AOD slag or VOD slag were investigated using static crucible technique by visual observation, SEM and XRD. The corrosion resistance and penetration resistance of speci-mens decrease with the increase of CaO content. This may be caused by the formation of C3S and C2S during the reactions between specimens and the slag. The formed C3S and C2S can restrain the further penetration to the matrix. The higher the CaO content, the more the C2S or C3S formed, the lower the porosity of the speci-mens, and the lower the penetration depth and corrosion rate. The corrosion resistance to AOD slag is better than that to VOD slag, because the reaction between AOD slag and the matrix is slighter than that between VOD slag and the matrix.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20272 and52074073)the Fundamental Research Funds for the Central Universities(No.2325035)。
文摘To investigate the dissolution behaviors of Al_(2)O_(3)inclusions in CaO-5wt%MgO-SiO_(2)-30wt%Al_(2)O_(3)-TiO_(2)system ladle slags,confocal scanning laser microscopy was conducted on the slags with different TiO_(2)contents(0-10wt%),and scanning electron microscopy was performed to study the interfacial reaction between Al_(2)O_(3)and this slag system.The results disclose that the dissolution of Al_(2)O_(3)inclusions does not result in the formation of new phases at the boundary between the slag and the inclusions.In TiO_(2)-bearing and TiO_(2)-free ladle slags,there is no difference in the dissolution mechanism of Al_(2)O_(3)inclusions at steelmaking temperatures.Boundary layer diffusion is found as the controlling step of the dissolution of Al_(2)O_(3),and the diffusion coefficient is in the range of 4.18×10^(-10)to 2.18×10^(-9)m^(2)/s at 1450-1500℃.Compared with the solubility of Al_(2)O_(3)in the slags,slag viscosity and temperature play a more profound role in the dissolution of Al_(2)O_(3)inclusions.A lower viscosity and a lower melting point of the slags are beneficial for the dissolution.Suitable addition of TiO_(2)(e.g.,5wt%)in ladle slags can enhance the dissolution of Al_(2)O_(3)inclusions because of the low viscosity and melting point of the slags,while excessive addition of TiO_(2)(e.g.,10wt%)shows the opposite trend.
文摘The experiments on the foaminess of the CaO-MgO-Al2O3 -SiO2 -CaF2 refining slag system have been carried out. The obtained results are as followst (1) relative foaming height linearly increases with the increasing of the flowrate of blowing gas; (2) the proper content of MgO is about 11% when slag basicity B<2.5 and it should lower when slag basicity will be higher; (3) the better content of Al2O3, (MgO)+(Al2O3 ) is 15% and 20 % ~ 26 % respectively at the range of lower basicities; (4) the effect of slag basicity on the foaminess is complex and its optimizing vaiue is 1.9 at the specific contents of MgO, Al2O3 and CaF2.
基金This study was financially supported by Baosteel, College Natural Science Research Project of Jiangsu Province (No. 04KJB430022,05KJD450043)the National Natural Science Foundation of China (No.50474037)
文摘To reduce the slag sticking onto the snorkel of the ladle during the ladle alloying treatment station (LATS) process, CaO- CaF2 (the mass ratio of CaO/CaF2 is 1:1) was employed as the modifier of the LATS refining ladle slag. The effect of CaO-CaF2 on the melting point, viscosity, and desulfurizing capability of the ladle slag was investigated. The melting point of the unmodified ladle slag is 1439℃. When adding 20wt% CaO-CaF2, the melting point is decreased to 1327℃. At 1500℃. the viscosity of the unmodified ladle slag is 6.5 Pa.s, which can be decreased lower than 2 Pa.s by adding more than 10wt% CaO-CaF2. The experimental results of desulfu- rization of the melts show that the desulfurizing power of the ladle slag can be enhanced by adding CaO-CaF2.
文摘The foaming indexes of a group of refining slag were measured. The refining slag with better foaming ability was chosen,its composition (mass frachon in %) is CaO, 53.25, SiO2, 17.75, MgO, 9; Al2O3, 15 and CaF2, 5. The relationship between slag foaming index and physical properties of the slag was obtained by dimensional analysis, and the expression indicates that viscosity of slag is the most important factor which influences foamng index. The influence sequence of slap composition on foaming index was also obtained as follows: CaF2→MgO→Al2O3→ B (CaO/SiO2).
基金The authors thank for the instrUction of Prof. Jian Zhang of the University of Science and Technology Beliing and the financia
文摘According to the coexistence theory of slag structure melts, the oxidizing capability of the refining slag CaO-MgO-FeO- A12O3SiO2 is studied and the relationship between the mass action concentration of FeO (NFeO) and the activity of FetO (αFetO) for this slag is found to be as NFeo=0.656 1 αFetO. Furthermore, the calculating model of oxidizing capability of the refining slag BaO-CaO-MgO- FeOA12O3-SiO2 is established. A satisfactory result is obtained when using the above oxidizing capability relationship to calculate the desulphurizing capability of such refining BaO-slags.
文摘Laboratory study; was carried out on deep desulfurization of molten steel by CaO-Al2O3 based refining slag containing BaO at 1873K to achieve lower sulphur level in steel. A mathematical model of desulfurization was established with the methodology of quadratic orthogohal regression. According to the modle, the influence of AlO3/CaO, MgO, CaF2, BaO in slag on desulfurization rate was analyzed. The results showed that the desulfurization rate almost linearly decreased with the increase of Al2O3/CaO and it increased firstly then decreased when MgO and BaO content increased respectixely, yet the trend is on the contrary as CaF2 content increased. Based on the comprehensive analysis, the optimum composition of the refining slag was achieved under the experimental conditions.
文摘The physical property of transformed RE enriched slag is determined and the results show that when REO is within the range of 10% to 30%, the fusibility temperature of the slag is blast furnace smelting for the fusibility temperature under 1220 degrees C and the basicity is from 1.0 to 2.5, it does not cause difficulties for fusibiliy temperature under 1300 degrees C; and at a temperature from 1300 degrees C to 1500 degrees C the viscosity is below 5 Pa. s. Through adjusting CaF2 content in the slag, the property of slag can be improved.
文摘Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time largely affected non-metallic inclusions.With the reaction time increased from 30 min to 90 min in laboratory study,MgO-Al_2O_3 spinels were gradually changed into CaO-MgO-Al_2O_3 system inclusions surrounded by softer CaO-Al_2O_3 surface layers.By using high basicity slag which contained as much as 41%Al_2O_3 in the laboratory study,ratio of low melting temperature CaO-MgO-Al_2O_3 system inclusions was remarkably increased to above 80%.In the industrial experiment,during the secondary refining,the inclusions changed in order of 'Al_2O_3→MgO-Al_2O_3→CaO-MgO-Al_2O_3'.Through the LF and RH refining,most inclusions could be transferred to lower melting temperature CaO-Al_2O_3 and CaO-MgO-Al_2O_3 system inclusions.
基金financially supported by the National Natural Science Foundation of China (No.51872023)
文摘The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite,MgO-ZrO2 composite,and MgO-MgAl2O4-ZrO2 composite.On the basis of the microstructural analysis and mechanisms calculations,the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure,which helps protect the high activity of ZrO2.When in contact with the slag,ZrO2 reacts with CaO to form the stable phase CaZrO3,which protects MgAl2O4 against corrosion,thereby enhancing the corrosion resistance of the composite.
基金financially supported by the National Nature Science Foundation of China(Nos.U1860206,51725402)the Science and Technology Program of Hebei,China(Nos.20311006D,20591001D)。
文摘The dissolution kinetics of Al_(2)O_(3) in CaO-Al_(2)O_(3) SiOslags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K.The results show that the controlling step during the Al_(2)O_(3) dissolution was the diffusionin molten slag.It was found that the dissolution curves of Al_(2)O_(3) particles were hardly agreed with the traditional boundary layer diffusion model with the increase of the CaO/Al_(2)O_(3) ratio of slag.A modified diffusion equation considering slag viscosity was developed to study the dissolution mechanism of Al_(2)O_(3) in slag.Diffusion coefficients of Al_(2)O_(3) in slag were calculated as 2.8×10to 4.1×10m~2/s at the temperature of 1773-1873 K.The dissolution rate of Al_(2)O_(3) increased with higher temperature,CaO/Al_(2)O_(3),and particle size.A new model was shown to be v_(Al_(2)O_(3))=0.16×r_(0)^(1.58)×x^(3.52)×(T-T_(mp))^(1.11)to predict the dissolution rate and the total dissolution time of Al_(2)O_(3) inclusions with various sizes,where vAl_(2)O_(3) is the dissolution rate of Al_(2)O_(3) in volume,μm^(3)/s;x is the value of CaO/Al_(2)O_(3) mass ratio;R_(0) is the initial radius of Al_(2)O_(3),μm;T is the temperature,K;T_(mp) is the melting point of slag,K.