GaN films grown on(111)Si substrate with different lattice parameters of the AlN buffer layer by metal–organic chemical vapor deposition are studied.The stress states obtained by different test methods are compared a...GaN films grown on(111)Si substrate with different lattice parameters of the AlN buffer layer by metal–organic chemical vapor deposition are studied.The stress states obtained by different test methods are compared and it is found that the lattice parameter of the AlN buffer layer may have a significant effect on the stress state in the initial stage of subsequent GaN film growth.A larger compressive stress is beneficial to improved surface morphology and crystal quality of GaN film.The results of further orthogonal experiments show that an important factor affecting the lattice parameter is the growth rate of the AlN buffer layer.This work may be helpful for realizing simple GaN-on-Si structures and thus reducing the costs of growth processes.展开更多
Unintentionally doped AlGaN thin films are grown on c-plane(0001) sapphire substrate by metal-organic chemical vapor deposition, and low-temperature AlN is deposited onto sapphire substrate used as a bu?er layer. AlGa...Unintentionally doped AlGaN thin films are grown on c-plane(0001) sapphire substrate by metal-organic chemical vapor deposition, and low-temperature AlN is deposited onto sapphire substrate used as a bu?er layer. AlGaN metal-semiconductor-metal ultraviolet photodetectors with Ni/Au interdigitated contact electrodes are then fabricated by lift-off technology. The dark current of the AlGaN photodetectors is 5.61×10-9 A at 2-V applied bias and the peak response occurrs at 294 nm.展开更多
GaN intermedial layers grown under different pressures are inserted between GaN epilayers and AIN/Si(111) substrates. In situ optical reflectivity measurements show that a transition from the three-dimensional (3D...GaN intermedial layers grown under different pressures are inserted between GaN epilayers and AIN/Si(111) substrates. In situ optical reflectivity measurements show that a transition from the three-dimensional (3D) mode to the 2I) one occurs during the GaN epilayer growth when a higher growth pressure is used during the preceding GaN intermedial layer growth, and an improvement of the crystalline quality of GaN epilayer will be made. Combining the in situ reflectivity and transmission electron microscopy (TEM) measurements, it is suggested that the lateral growth at the transition of growth mode is favourable for bending of dislocation lines, thus reducing the density of threading dislocations in the epilayer.展开更多
基金supported by Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(Grant Nos.Z211100007921022 and Z211100004821001)the National Natural Science Foundation of China(Grant Nos.62034008,62074142,62074140,61974162,61904172,61874175,62127807,and U21B2061)+3 种基金Key Research and Development Program of Jiangsu Province(Grant No.BE2021008-1)Beijing Nova Program(Grant No.202093)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43030101)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2019115).
文摘GaN films grown on(111)Si substrate with different lattice parameters of the AlN buffer layer by metal–organic chemical vapor deposition are studied.The stress states obtained by different test methods are compared and it is found that the lattice parameter of the AlN buffer layer may have a significant effect on the stress state in the initial stage of subsequent GaN film growth.A larger compressive stress is beneficial to improved surface morphology and crystal quality of GaN film.The results of further orthogonal experiments show that an important factor affecting the lattice parameter is the growth rate of the AlN buffer layer.This work may be helpful for realizing simple GaN-on-Si structures and thus reducing the costs of growth processes.
基金supported by the National Natural Science Foundation of China(No.61006052)the Fundamental Research Funds for the Central Universities(No.K5051325009)
文摘Unintentionally doped AlGaN thin films are grown on c-plane(0001) sapphire substrate by metal-organic chemical vapor deposition, and low-temperature AlN is deposited onto sapphire substrate used as a bu?er layer. AlGaN metal-semiconductor-metal ultraviolet photodetectors with Ni/Au interdigitated contact electrodes are then fabricated by lift-off technology. The dark current of the AlGaN photodetectors is 5.61×10-9 A at 2-V applied bias and the peak response occurrs at 294 nm.
基金Project supported by the National Natural Science Foundation of China(60890192,60877006,50872146)the Chinese Science and Technology Ministry(“863”,No.2009AA033101)~~
基金Supported by the National Natural Science Foundation of China under Grant No 60476021.
文摘GaN intermedial layers grown under different pressures are inserted between GaN epilayers and AIN/Si(111) substrates. In situ optical reflectivity measurements show that a transition from the three-dimensional (3D) mode to the 2I) one occurs during the GaN epilayer growth when a higher growth pressure is used during the preceding GaN intermedial layer growth, and an improvement of the crystalline quality of GaN epilayer will be made. Combining the in situ reflectivity and transmission electron microscopy (TEM) measurements, it is suggested that the lateral growth at the transition of growth mode is favourable for bending of dislocation lines, thus reducing the density of threading dislocations in the epilayer.