4,7-diphenyl-1,10-phenantroline from heterocyclic diamines and alizarine yellow R from chromogenic reagents have been used for spectrophotometric determination of manganese in the form of heteroligand manganese comple...4,7-diphenyl-1,10-phenantroline from heterocyclic diamines and alizarine yellow R from chromogenic reagents have been used for spectrophotometric determination of manganese in the form of heteroligand manganese complex. The complex formation and extraction condition, physical-chemical and analytical characteristics of this complex have been established. 5.5 - 11.0 pH range is observed as complex formation pH range. Extraction and stability constants were accordingly found as Kext = 8.32 × 1014 and lgβK = 7.2 ± 0.1. Molar absorptivity is ε = (2.27± 0.08) × 104 l·g-1·cm-1. In the range of 0.5 - 23.0 μkg manganese (II) Beer’s law is obeyed. The extraction-photometric methods of manganese determination have been worked out. The strangers ions influence on determination of manganese (II) has been studied. To determine amount of manganese in eggplant the proposed method was applied successfully.展开更多
以纳米TiO2(P25)粉末作为催化剂光降解茜素黄R.GC-MS和LC-MS检测结果表明,有3种可能的降解途径:①茜素黄R(C13H8N3O5Na)水解生成的C13H8N3O5-(H)与光催化产生的.OH自由基发生取代反应生成C13H8N3O6-(I)和C13H8N3O7-(J),进一步脱羧分别生...以纳米TiO2(P25)粉末作为催化剂光降解茜素黄R.GC-MS和LC-MS检测结果表明,有3种可能的降解途径:①茜素黄R(C13H8N3O5Na)水解生成的C13H8N3O5-(H)与光催化产生的.OH自由基发生取代反应生成C13H8N3O6-(I)和C13H8N3O7-(J),进一步脱羧分别生成C12H9N3O4(L)和C12H9N3O5(M);②H分子发生脱羧反应生成C12H9N3O3(K),进一步反应生成C12H11N3(C)和C12H12N2(D);③H分子中氮氮键发生断裂而生成C6H6N2O2(A)、C6H4N2O4(B)、C6H8N2(E)、C6H6O(F)和C7H7NO3(G).所有生成的中间产物被继续降解,最终矿化为CO2和H2O等无机小分子物质.利用Molecular Orbital PACkage中的PM3半经验方法对茜素黄R分子构型优化计算,结果表明,茜素黄R的羧基净电荷密度为-0.680,在实验条件下(pH为2.86)羧基易吸附在TiO2表面,而成为.OH进攻的最有利位置,实验检测到羟基化的产物(J和I).茜素黄R的羧基和苯环相连的C—C键长最长,反应过程中易发生脱羧反应,实验检测到脱羧后的产物(K);—N N—键长较长,易断裂生成芳胺类化合物(A,E,G等).茜素黄R带羧基和羟基的苯环电荷密度为-0.160,带硝基苯环电荷为-0.165,易吸附在催化剂表面而被自由基进攻,生成羟基化产物.计算结果和实验检测结果一致.动力学研究表明,茜素黄R光催化降解的动力学符合Langmuir-Hinshelwood模型计算的结果.展开更多
文摘4,7-diphenyl-1,10-phenantroline from heterocyclic diamines and alizarine yellow R from chromogenic reagents have been used for spectrophotometric determination of manganese in the form of heteroligand manganese complex. The complex formation and extraction condition, physical-chemical and analytical characteristics of this complex have been established. 5.5 - 11.0 pH range is observed as complex formation pH range. Extraction and stability constants were accordingly found as Kext = 8.32 × 1014 and lgβK = 7.2 ± 0.1. Molar absorptivity is ε = (2.27± 0.08) × 104 l·g-1·cm-1. In the range of 0.5 - 23.0 μkg manganese (II) Beer’s law is obeyed. The extraction-photometric methods of manganese determination have been worked out. The strangers ions influence on determination of manganese (II) has been studied. To determine amount of manganese in eggplant the proposed method was applied successfully.
文摘以纳米TiO2(P25)粉末作为催化剂光降解茜素黄R.GC-MS和LC-MS检测结果表明,有3种可能的降解途径:①茜素黄R(C13H8N3O5Na)水解生成的C13H8N3O5-(H)与光催化产生的.OH自由基发生取代反应生成C13H8N3O6-(I)和C13H8N3O7-(J),进一步脱羧分别生成C12H9N3O4(L)和C12H9N3O5(M);②H分子发生脱羧反应生成C12H9N3O3(K),进一步反应生成C12H11N3(C)和C12H12N2(D);③H分子中氮氮键发生断裂而生成C6H6N2O2(A)、C6H4N2O4(B)、C6H8N2(E)、C6H6O(F)和C7H7NO3(G).所有生成的中间产物被继续降解,最终矿化为CO2和H2O等无机小分子物质.利用Molecular Orbital PACkage中的PM3半经验方法对茜素黄R分子构型优化计算,结果表明,茜素黄R的羧基净电荷密度为-0.680,在实验条件下(pH为2.86)羧基易吸附在TiO2表面,而成为.OH进攻的最有利位置,实验检测到羟基化的产物(J和I).茜素黄R的羧基和苯环相连的C—C键长最长,反应过程中易发生脱羧反应,实验检测到脱羧后的产物(K);—N N—键长较长,易断裂生成芳胺类化合物(A,E,G等).茜素黄R带羧基和羟基的苯环电荷密度为-0.160,带硝基苯环电荷为-0.165,易吸附在催化剂表面而被自由基进攻,生成羟基化产物.计算结果和实验检测结果一致.动力学研究表明,茜素黄R光催化降解的动力学符合Langmuir-Hinshelwood模型计算的结果.