期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Studies on aluminum powder combustion in detonation environment 被引量:2
1
作者 Jian-Xin Nie Run-Zhe Kan +3 位作者 Qing-Jie Jiao Qiu-Shi Wang Xue-Yong Guo Shi Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期426-435,共10页
The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature(in unit 10^(3)K),high pressure(in unit GPa),and high-speed motion(in units km/s)was studied,and a combustion... The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature(in unit 10^(3)K),high pressure(in unit GPa),and high-speed motion(in units km/s)was studied,and a combustion model of the aluminum particles in detonation environment was established.Based on this model,a combustion control equation for aluminum particles in detonation environment was obtained.It can be seen from the control equation that the burning time of aluminum particle is mainly affected by the particle size,system temperature,and diffusion coefficient.The calculation result shows that a higher system temperature,larger diffusion coefficient,and smaller particle size lead to a faster burn rate and shorter burning time for aluminum particles.After considering the particle size distribution characteristics of aluminum powder,the application of the combustion control equation was extended from single aluminum particles to nonuniform aluminum powder,and the calculated time corresponding to the peak burn rate of aluminum powder was in good agreement with the experimental electrical conductivity results.This equation can quantitatively describe the combustion behavior of aluminum powder in different detonation environments and provides technical means for quantitative calculation of the aluminum powder combustion process in detonation environment. 展开更多
关键词 aluminum particle combustion model aluminum powder burn rate equation burning time
原文传递
The Process of a Laser-Supported Combustion Wave Induced by Millisecond Pulsed Laser on Aluminum Alloy 被引量:1
2
作者 张巍 魏智 +1 位作者 王翼斌 金光勇 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第1期60-62,共3页
We study the process of a laser-supported combustion wave (LSCW) when an aluminum alloy is irradiated by a millisecond pulse laser based on the method of laser shadowgraphy. Under the condition of different laser pa... We study the process of a laser-supported combustion wave (LSCW) when an aluminum alloy is irradiated by a millisecond pulse laser based on the method of laser shadowgraphy. Under the condition of different laser parameters, the obtained results include the velocity, ignition threshold of LSCW and the variation law. The speed of LSCW increases with the laser energy under the same irradiation laser pulse width, and the speed of LSCW reduces with the increase of the laser pulse width under the same irradiation laser energy. Moreover, the ignition time of LSCW becomes shorter by increasing the laser number of the pulse and is not effected by changing the frequencies, when keeping the laser pulse width and energy unchanged. The results of the study can be applied in the laser propulsion technology and metal surface laser heat treatment, etc. 展开更多
关键词 of as in TIME is by The Process of a Laser-Supported combustion Wave Induced by Millisecond Pulsed Laser on aluminum Alloy on
原文传递
Detailed modeling of aluminum particle combustion——From single particles to cloud combustion in Bunsen flames 被引量:3
3
作者 Jiarui ZHANG Oliver T.STEIN +6 位作者 Tien D.LUU Ali SHAMOONI Zhixun XIA Zhenbing LUO Likun MA Yunchao FENG Andreas KRONENBURG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第5期319-332,共14页
A numerical model for aluminum cloud combustion which includes the effects of interphase heat transfer,phase change,heterogeneous surface reactions,homogeneous combustion,oxide cap growth and radiation within the Eule... A numerical model for aluminum cloud combustion which includes the effects of interphase heat transfer,phase change,heterogeneous surface reactions,homogeneous combustion,oxide cap growth and radiation within the Euler–Lagrange framework is proposed.The model is validated in single particle configurations with varying particle diameters.The combustion process of a single aluminum particle is analyzed in detail and the particle consumption rates as well as the heat release rates due to the various physical/chemical sub-models are presented.The combustion time of single aluminum particles predicted by the model are in very good agreement with empirical correlations for particles with diameters larger than 10μm.The prediction error for smaller particles is noticeably reduced when using a heat transfer model that is capable of capturing the transition regime between continuum mechanics and molecular dynamics.The predictive capabilities of the proposed model framework are further evaluated by simulating the aluminum/air Bunsen flames of Mc Gill University for the first time.Results show that the predicted temperature distribution of the flame is consistent with the experimental data and the double-front structure of the Bunsen flame is reproduced well.The burning rates of aluminum in both single particle and particle cloud configurations are calculated and compared with empirical correlations.Results show that the burning rates obtained from the present model are more reasonable,while the correlations,when embedded in the Euler–Lagrange context,tend to underestimate the burning rate in the combustion stage,particularly for the considered fuel-rich flames. 展开更多
关键词 aluminum particle combustion Bunsen flame Burning time Burning rate Particle cloud
原文传递
Combustion synthesis of YAG:Ce phosphors via the thermite reaction of aluminum 被引量:1
4
作者 Junpei Ohyama Chunyu Zhu +4 位作者 Genki Saito Miki Haga Takahiro Nomura Norihito Sakaguchi Tomohiro Akiyama 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第3期248-256,共9页
Cerium-doped yttrium aluminum garnet(YAG:Ce) as a yellow phosphor for white light-emitting diodes(LEDs) was synthesized via a facile combustion method using Y2 O3, CeO2, Al2 O3, Al,and NaClO4 as raw materials. Th... Cerium-doped yttrium aluminum garnet(YAG:Ce) as a yellow phosphor for white light-emitting diodes(LEDs) was synthesized via a facile combustion method using Y2 O3, CeO2, Al2 O3, Al,and NaClO4 as raw materials. The combustion synthesis approach utilizes the strong exothermic oxidation of aluminum to realize a self-sustaining reaction. In this study, we investigated the effects of the ratios of Al2 O3 to AI,fluxes, and coprecipitated materials as raw materials on the luminescence properties of the synthesized YAG:Ce phosphors. When the amount of Al2 O3 x is varied, the combustion reaction proceeds at x ≤ 1.8,with x = 1.725 being the optimum condition for producing a high-performance product. When 5 wt%BaF2 is added, the luminescence intensity is significantly improved owing to a decrease of YAP(YAlO3)formation with improved uniformity. However, the addition of CaF2 and NaF does not improve the luminescence properties. To suppress the segregation of CeO2, we used the coprecipitated material Y2 O3-CeO2 as a raw material. Unlike with separate addition of Y2 O3 and CeO2, Ce ions are uniformly distributed in the coprecipitated material, resulting in improved luminescence properties. The combination of BaF2 and coprecipitated material significantly improves the internal quantum efficiency to83.0%, which is close to that of commercial phosphors. 展开更多
关键词 Phosphor Yttrium aluminum garnet combustion synthesis Flux Coprecipitated material Rare earths
原文传递
Combustion characteristics of nanofluid fuels in a half-opening slot tube 被引量:2
5
作者 LIU GuanNan LIU Dong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1075-1087,共13页
Combustion characteristics of nanofluid fuels containing aluminum nanoparticles were investigated in half-opening slot tubes from the fundamental view. The effects of particle loading rates(0.25% and 2.5% by weight), ... Combustion characteristics of nanofluid fuels containing aluminum nanoparticles were investigated in half-opening slot tubes from the fundamental view. The effects of particle loading rates(0.25% and 2.5% by weight), type of base fuels(ethanol and butanol),and fuel flow rates(0.2, 0.6, and 1 mL/min) were studied in details. The combustion characteristics of the nanofluid fuels and pure based fuels were also examined to provide a comparison. Flame was unstable with reignition, stable state, nearly extinguishment repeatedly at low flow rate. At medium flow rate, flame height was increased and flame tended to be stable. At high flow rate,flame became unstable and was disturbed by the droplet forming and dripping significantly. Al atoms inside the oxide layer should be melted before the particles combustion, while Al oxide layer should be melted before the particles aggregates combustion. The effects of particles on the combustion characteristics, especially on the evaporation rate of base fuel, were discussed. The reasons for various combustion phenomena of nanofluid fuels were given, which can provide the useful guidance for the experimental research and practical applications of nanofluid fuels. 展开更多
关键词 nanofluid fuel combustion aluminum ethanol butanol
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部