Alzheimer’s disease (AD) is caused by synaptic failure and the excessive accumulation of misfolded proteins especially Aβ and tau, and associated with memory loss and cognitive impairment. Treatment of AD mainly con...Alzheimer’s disease (AD) is caused by synaptic failure and the excessive accumulation of misfolded proteins especially Aβ and tau, and associated with memory loss and cognitive impairment. Treatment of AD mainly consists of symptomatic therapy and disease-modifying therapy (DMT). Several monotherapies including small molecules or antibodies have been evaluated through multiple clinical trials, but a very few have been approved by the USFDA to intervene the disease’s pathogenesis. Past research has shown multifactorial nature of AD, therefore, multi-target drugs were proposed to target different pathways at the same time, however, currently no rationally designed multi-target directed ligand (MTDL) has been clinically approved. Different combinations and bispecific antibodies are also under development. Novel approaches like stem cell-based therapies, microRNAs, peptides, ADCs and vaccines cast a new hope for AD treatment, however, a number of questions remained to be answered prior to their safe and effective clinical translation. This review explores the small molecules, MTDL, and antibodies (monospecific and bispecific) for the treatment of AD. Finally, future perspectives (stem cell therapy, PROTAC approaches, microRNAs, ADC, peptides and vaccines) are also discussed with regard to their clinical applications and feasibility.展开更多
文摘Alzheimer’s disease (AD) is caused by synaptic failure and the excessive accumulation of misfolded proteins especially Aβ and tau, and associated with memory loss and cognitive impairment. Treatment of AD mainly consists of symptomatic therapy and disease-modifying therapy (DMT). Several monotherapies including small molecules or antibodies have been evaluated through multiple clinical trials, but a very few have been approved by the USFDA to intervene the disease’s pathogenesis. Past research has shown multifactorial nature of AD, therefore, multi-target drugs were proposed to target different pathways at the same time, however, currently no rationally designed multi-target directed ligand (MTDL) has been clinically approved. Different combinations and bispecific antibodies are also under development. Novel approaches like stem cell-based therapies, microRNAs, peptides, ADCs and vaccines cast a new hope for AD treatment, however, a number of questions remained to be answered prior to their safe and effective clinical translation. This review explores the small molecules, MTDL, and antibodies (monospecific and bispecific) for the treatment of AD. Finally, future perspectives (stem cell therapy, PROTAC approaches, microRNAs, ADC, peptides and vaccines) are also discussed with regard to their clinical applications and feasibility.