Gelatin(G)is a commonly used natural biomaterial owing to its good biocompatibility and easy availability.However,using pure gelatin as a bioink can barely achieve an ideal shape fidelity in 3D printing.In this study,...Gelatin(G)is a commonly used natural biomaterial owing to its good biocompatibility and easy availability.However,using pure gelatin as a bioink can barely achieve an ideal shape fidelity in 3D printing.In this study,Antheraea pernyi silk fibroin nanofibers(ASFNFs)with arginine-glycine-aspartic acid(RGD)peptide and partial natural silk structure are extracted and combined with pure gelatin bioink to simultaneously improve the shape fidelity and cytocompatibility of corresponding 3D printed scaffold.Results show that the optimum printing temperature is 30℃ for these bioinks.The printed filaments using 16G/4ASFNFs bioink(16wt%gelatin and 4wt%ASFNFs)demonstrate better morphology and larger pore size than those printed by pure gelatin bioink(20G,20wt%gelatin),thus successfully improve the shape fidelity and porosity of the 3D printed scaffold.The 16G/4ASFNFs scaffold also demonstrate higher swelling ratio and faster degradation rate than the pure gelatin scaffold.Moreover,the cell viability and proliferation ability of Schwann cells cultured on the 16G/4ASFNFs scaffold are significantly superior than those cultured on the pure 20G scaffold.The ASFNFs enhanced 16G/4ASFNFs scaffold reported here are expected to be a candidate with excellent potential for biomedical applications.展开更多
The sol-gel transition behavior of Antherae pernyi silk fibroin(Ap-SF) has not been systematically investigated.In this work,the influence of environmental temperature,pH,the concentration of Ap-SF,K+ and Ca2+ on the ...The sol-gel transition behavior of Antherae pernyi silk fibroin(Ap-SF) has not been systematically investigated.In this work,the influence of environmental temperature,pH,the concentration of Ap-SF,K+ and Ca2+ on the gelation time,and the structural changes of Ap-SF in sol-gel transformation were studied.The results indicated that the gelation time of the Ap-SF aqueous solution decreased with the increase of the Ap-SF concentration and environmental temperature.The sol-gel transformation of Ap-SF was much more rapid than that of Bombyx mori silk fibroin under the same conditions.The Ap-SF was sensitive to changes in the concentration of Ca2+ and K+.Upon gelation,the random coil structure of the Ap-SF was significantly transformed into the β-sheet structure.展开更多
基金This work was supported by the Natural Science Foundation of Shanghai(20ZR1402400)the National Natural Science Foundation of China(52173031,51903045,51703033)+4 种基金the Program of Shanghai Academic/Technology Research Leader(20XD1400100)the National Key Research and Development Program of China(2020YFC1910303,2018YFC1105800)the Basic Research Project of the Science and Technology Commission of Shanghai Municipality(21JC1400100)the Fundamental Research Funds for the Central Universities(2232020D-04,2232019A3-06,2232019D3-02)the Science and Technology Commission of Shanghai Municipality(20DZ2254900).
文摘Gelatin(G)is a commonly used natural biomaterial owing to its good biocompatibility and easy availability.However,using pure gelatin as a bioink can barely achieve an ideal shape fidelity in 3D printing.In this study,Antheraea pernyi silk fibroin nanofibers(ASFNFs)with arginine-glycine-aspartic acid(RGD)peptide and partial natural silk structure are extracted and combined with pure gelatin bioink to simultaneously improve the shape fidelity and cytocompatibility of corresponding 3D printed scaffold.Results show that the optimum printing temperature is 30℃ for these bioinks.The printed filaments using 16G/4ASFNFs bioink(16wt%gelatin and 4wt%ASFNFs)demonstrate better morphology and larger pore size than those printed by pure gelatin bioink(20G,20wt%gelatin),thus successfully improve the shape fidelity and porosity of the 3D printed scaffold.The 16G/4ASFNFs scaffold also demonstrate higher swelling ratio and faster degradation rate than the pure gelatin scaffold.Moreover,the cell viability and proliferation ability of Schwann cells cultured on the 16G/4ASFNFs scaffold are significantly superior than those cultured on the pure 20G scaffold.The ASFNFs enhanced 16G/4ASFNFs scaffold reported here are expected to be a candidate with excellent potential for biomedical applications.
基金supported by the National Basic Research Program of China (Grant No 2005CB623902)the National Natural Science Foundation of China (Grant No 30970714)College Natural Science Research Project of Jiangsu Province (Grant No 07KJA43010)
文摘The sol-gel transition behavior of Antherae pernyi silk fibroin(Ap-SF) has not been systematically investigated.In this work,the influence of environmental temperature,pH,the concentration of Ap-SF,K+ and Ca2+ on the gelation time,and the structural changes of Ap-SF in sol-gel transformation were studied.The results indicated that the gelation time of the Ap-SF aqueous solution decreased with the increase of the Ap-SF concentration and environmental temperature.The sol-gel transformation of Ap-SF was much more rapid than that of Bombyx mori silk fibroin under the same conditions.The Ap-SF was sensitive to changes in the concentration of Ca2+ and K+.Upon gelation,the random coil structure of the Ap-SF was significantly transformed into the β-sheet structure.