In present investigation, various bioassays were conducted to evaluate the alteration in levels of certain biomolecules, such as glycogen, protein, amino acid, DNA, RNA and lipids. For this purpose, worker termites we...In present investigation, various bioassays were conducted to evaluate the alteration in levels of certain biomolecules, such as glycogen, protein, amino acid, DNA, RNA and lipids. For this purpose, worker termites were treated with sub-lethal dose 40% and 80% of 24 hrs LD<sub>50</sub> values and observations were taken at 4 hrs interval up to 24 hrs. Crude latex and its combinatorial mixtures, like S-MLT-A, B-MLT-A, C-MLT-A, CU-MLT-A, AQ-MLT significantly altered level of bio-molecules in Odontotermes obesus. This effect was found time and dose dependent. Reduction or increase in biomolecules was calculated by using corresponding control. Maximum decrease in glycogen level was observed at 16 h when termites were treated with 80% of LD<sub>50</sub> of Ficus benghalensis aqueous extract i.e. 56.88% at 16 h of treatment. A similar dose caused very slight decrease in lipid contents at 4 h of treatment but it was found further significantly (p > 0.05) decreased in other successive treatments. 40% and 80% of LD<sub>50</sub> of C-MLT-B mixture caused significant (p > 0.05) decrease in DNA and RNA level at 16 h treatment. The level of DNA and RNA level was recorded 83.90%, 90.18% and 85.42% and 74.05% respectively. Similarly, total proteins were also found to be decreased with 40% and 80% of LD<sub>50</sub> of C-MLT-B mixture i.e. 71.47% and 66.45% respectively. All these alterations found in levels of various bio-molecules confirm the action of latex ingredients on worker termites that was antifeedant or deterrent types. These ingredients can be used to control not only termites but also other phytophagous insects in a sustainable and eco-friendly way.展开更多
文摘In present investigation, various bioassays were conducted to evaluate the alteration in levels of certain biomolecules, such as glycogen, protein, amino acid, DNA, RNA and lipids. For this purpose, worker termites were treated with sub-lethal dose 40% and 80% of 24 hrs LD<sub>50</sub> values and observations were taken at 4 hrs interval up to 24 hrs. Crude latex and its combinatorial mixtures, like S-MLT-A, B-MLT-A, C-MLT-A, CU-MLT-A, AQ-MLT significantly altered level of bio-molecules in Odontotermes obesus. This effect was found time and dose dependent. Reduction or increase in biomolecules was calculated by using corresponding control. Maximum decrease in glycogen level was observed at 16 h when termites were treated with 80% of LD<sub>50</sub> of Ficus benghalensis aqueous extract i.e. 56.88% at 16 h of treatment. A similar dose caused very slight decrease in lipid contents at 4 h of treatment but it was found further significantly (p > 0.05) decreased in other successive treatments. 40% and 80% of LD<sub>50</sub> of C-MLT-B mixture caused significant (p > 0.05) decrease in DNA and RNA level at 16 h treatment. The level of DNA and RNA level was recorded 83.90%, 90.18% and 85.42% and 74.05% respectively. Similarly, total proteins were also found to be decreased with 40% and 80% of LD<sub>50</sub> of C-MLT-B mixture i.e. 71.47% and 66.45% respectively. All these alterations found in levels of various bio-molecules confirm the action of latex ingredients on worker termites that was antifeedant or deterrent types. These ingredients can be used to control not only termites but also other phytophagous insects in a sustainable and eco-friendly way.