期刊文献+
共找到3,440篇文章
< 1 2 172 >
每页显示 20 50 100
Molecular Mechanism and Molecular Design of Lubricating Oil Antioxidants 被引量:1
1
作者 Su Shuo Long Jun +2 位作者 Duan Qinghua Zhou Han Zhao Yi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期135-145,共11页
To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me... To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions. 展开更多
关键词 lubricating oil antioxidant molecular mechanism molecular design antioxidant performance
下载PDF
A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:antioxidant and bile acid-binding capacity 被引量:5
2
作者 Qiaoyun Li Zuman Dou +5 位作者 Qingfei Duan Chun Chen Ruihai Liu Yueming Jiang Bao Yang Xiong Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期494-505,共12页
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic... In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods. 展开更多
关键词 Sea buckthorn Extraction method STRUCTURE Rheological properties antioxidant activity Bile acid binding capacity
下载PDF
Responses of growth performance,antioxidant function,small intestinal morphology and mRNA expression of jejunal tight junction protein to dietary iron in yellow-feathered broilers 被引量:1
3
作者 Kaiwen Lei Hao Wu +4 位作者 Jerry W Spears Xi Lin Xi Wang Xue Bai Yanling Huang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1329-1337,共9页
This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.... This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.A total of 7201-d-old yellow-feathered maleb roilers were allocated to 9 treatments with 8 replicate cages of 10 birds per cage.The dietary treatments were consisted of a basal diet(contained 79.6 mg Fe kg^(-1))supplemented with 0,20,40,60,80,160,320,640,and 1,280 mg Fe kg^(-1)in the form of FeSO_(4)·7H_(2)O.Compared with the birds in the control group,birds supplemented with 20mg Fe kg^(-1)had higher average daily gain(ADG)(P<0.0001).Adding 640 and 1,280 mg Fe kg^(-1)significantly decreased ADG(P<0.0001)and average daily feed intake(ADFI)(P<0.0001)compared with supplementation of 20mg Fe kg^(-1).Malondialdehyde(MDA)concentration in plasma and duodenum increased linearly(P<0.0001),but MDA concentration in liver and jejunum increased linearly(P<0.05)or quadratically(P<0.05)with increased dietary Fe concentration.The villus height(VH)in duodenum and jejunum,and the ratio of villus height to crypt depth(V/C)in duodenum decreased linearly(P?0.05)as dietary Feincreased.As dietary Fe increased,the jejunal relative mRNA abundance of claudin-1 decreased linearly(P=0.001),but the jejunal relative mRNA abundance of zona occludens-1(ZO-1)and occludin decreased linearly(P?0.05)or quadratically(P?0.05).Compared with the supplementation of 20 mg Fe kg^(-1),the supplementation of640 mg Fe kg^(-1)or higher increased(P?0.05)MDA concentrations in plasma,duodenum,and jejunum,decreased VH in the duodenum and jejunum,and the addition of 1,280 mg Fe kg^(-1)reduced(P?0.05)the jejunal tight junction protein(claudin-1,ZO-1,occludin)mRNA abundance.In summary,640 mg of supplemental Fe kg^(-1)or greater was associated with decreased growth performance,increased oxidative stress,disrupted intestinal morphology,and reduced mRNA expression of jejunal tight junction protein. 展开更多
关键词 IRON yellow-feathered broiler antioxidant function intestinal morphology tight junction protein
下载PDF
Emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate obtained by Corolase PP under high hydrostatic pressure 被引量:1
4
作者 Haining Guan Chunmei Feng +3 位作者 Min Ren Xiaojun Xu Dengyong Liu Xiaoqin Diao 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1271-1278,共8页
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro... Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods. 展开更多
关键词 Soybean protein isolate High hydrostatic pressure EMULSIFICATION antioxidant Bitter taste
下载PDF
Selenium Differentially Regulates Flavonoid Accumulation and Antioxidant Capacities in Sprouts of Twenty Diverse Mungbean(Vigna radiata(L.)Wilczek)Genotypes 被引量:1
5
作者 Fenglan Zhao Jizhi Jin +4 位作者 Meng Yang Franklin Eduardo Melo Santiago Jianping Xue Li Xu Yongbo Duan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期611-625,共15页
Seed germination with selenium(Se)is promising for producing Se-biofortified foods.Mungbean(Vigna radiata(L.)Wilczek)sprout is freshly eaten as a salad dressed with sauce,making it superior for Se biofortification.Since... Seed germination with selenium(Se)is promising for producing Se-biofortified foods.Mungbean(Vigna radiata(L.)Wilczek)sprout is freshly eaten as a salad dressed with sauce,making it superior for Se biofortification.Since the Se safety range for the human body is extremely narrow,it is imperative to evaluate the genotypic responses of mungbean sprouts to Se.This study evaluated the Se enrichment capacity and interaction withflavonoids and antioxidant systems in sprouts of 20 mungbean germplasms.Selenium treatment was done by immersing mung-bean seeds in 20μM sodium selenite solution for 8 h.Afterward,the biomass,Se amounts,flavonoid(particularly vitexin and isovitexin)contents,antioxidant capacity,and key biosynthetic gene expressions were measured.Sprout Se content was 2.0-7.0μg g^(-1) DW among the 20 mungbean germplasms.Selenium treatment differentially affected the biomass,totalflavonoid,vitexin,isovitexin,antioxidant enzyme activities,and antioxidant capacities of the mungbean germplasms.Eight germplasms showed increased biomass(p<0.05),the highest increasing by 127%,but 13 did not phenotypically respond to Se treatment.Seven and six germplasms showed varied levels of vitexin and isovitexin increment after Se treatment,the highest measuring 2.67-and 2.87-folds for vitexin and isovitexin,respectively.Two mungbeanflavonoid biosynthesis genes,chalcone synthase(VrCHS)and chalcone isomerase(VrCHI)were significantly up-regulated in the germplasms with increased vitexin and isovitexin levels(p<0.05).Moreover,Se enrichment capacity was significantly correlated with the vitexin,isovitexin,and antiox-idant capacities.In conclusion,mungbean sprouts could be a useful Se-biofortified food,but the Se enrichment capacity and nutritional response must be determined for each germplasm before commercialization. 展开更多
关键词 antioxidant capacity gene expression genotypic variation isovitexin VITEXIN SELENIUM
下载PDF
Nitrogen application regulates antioxidant capacity and flavonoid metabolism,especially quercetin,in grape seedlings under salt stress
6
作者 Congcong Zhang Han Wang +13 位作者 Guojie Nai Lei Ma Xu Lu Haokai Yan Meishuang Gong YuanyuanLi Ying Lai Zhihui Pu Li Wei Guiping Chen Ping Sun Baihong Chen Shaoying Ma Sheng Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期4074-4092,共19页
Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on sal... Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on salt tolerance in grapevine is unclear.In this study,we investigated the effect of nitrogen fertilizer(0.01 and 0.1 mol L^(-1)NH_(4)NO_(3))application on the salt(200 mmol L^(-1)NaCl)tolerance of grapevine based on physiological indices,and transcriptomic and metabolomic analyses.The results revealed that 0.01 mol L^(-1)NH_(4)NO_(3) supplementation significantly reduced the accumulation of superoxide anion(O_(2)^(-)·),enhanced the activities of superoxide dismutase(SOD)and peroxidase(POD),and improved the levels of ascorbic acid(AsA)and glutathione(GSH)in grape leaves compared to salt treatment alone.Specifically,joint transcriptome and metabolome analyses showed that the differentially expressed genes(DEGs)and differentially accumulated metabolites(DAMs)were significantly enriched in the flavonoid biosynthesis pathway(ko00941)and the flavone and flavonol biosynthesis pathway(ko00944).In particular,the relative content of quercetin(C00389)was markedly regulated by salt and nitrogen.Further analysis revealed that exogenous foliar application of quercetin improved the SOD and POD activities,increased the AsA and GSH contents,and reduced the H_(2)O_(2) and O_(2)^(-)·contents.Meanwhile,10 hub DEGs,which had high Pearson correlations(R^(2)>0.9)with quercetin,were repressed by nitrogen.In conclusion,all the results indicated that moderate nitrogen and quercetin application under salt stress enhanced the antioxidant system defense response,thus providing a new perspective for improving salt tolerance in grapes. 展开更多
关键词 GRAPEVINE salt stress nitrogen multi-omics QUERCETIN antioxidant
下载PDF
Effects of antioxidant‑rich Lactiplantibacillus plantarum inoculated alfalfa silage on rumen fermentation, antioxidant and immunity status, and mammary gland gene expression in dairy goats
7
作者 Yixin Zhang Samaila Usman +4 位作者 Qiang Li Fuhou Li Xia Zhang Luiz Gustavo Nussio Xusheng Guo 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期1227-1240,共14页
Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby ... Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress(OS)on the animals.To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation,a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum.Methods Twenty-four Guanzhong dairy goats(38.1±1.20 kg)were randomly assigned to two dietary treatments:one containing silage inoculated with L.plantarum MTD/1(RSMTD-1),and the other containing silage inoculated with high antioxidant activity L.plantarum 24-7(ES24-7).Results ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1.The ES24-7 diet elevated the total antioxidant capacity(T-AOC),superoxide dismutase(SOD),glutathione peroxi-dase(GSH-Px),and catalase(CAT)activities in milk,serum,and feces of lactating goats(with the exception of T-AOC in milk).Additionally,the diet containing ES24-7 inoculated silage enhanced casein yield,milk free fatty acid(FFA)content,and vitamin A level in the goats’milk.Furthermore,an increase of immunoglobulin(Ig)A,IgG,IgM,inter-leukin(IL)-4,and IL-10 concentrations were observed,coupled with a reduction in IL-1β,IL-2,IL-6,interferon(IFN)-γ,and tumor necrosis factor(TNF)-αconcentrations in the serum of lactating goats fed ES24-7.Higher concentrations of total volatile fatty acid(VFA),acetate,and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage.Moreover,the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2(NFE2L2),beta-carotene oxygenase 1(BCO1),SOD1,SOD2,SOD3,GPX2,CAT,glu-tathione-disulfide reductase(GSR),and heme oxygenase 1(HMOX1)genes in the mammary gland,while decreased the levels of NADPH oxidase 4(NOX4),TNF,and interferon gamma(IFNG).Conclusions These findings indicated that feeding L.plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland. 展开更多
关键词 Alfalfa silage antioxidant activity Gene expression Goats IMMUNITY LACTATION
下载PDF
Betalains protect various body organs through antioxidant and anti-inflammatory pathways
8
作者 Nilesh Prakash Nirmal Seema Medhe +4 位作者 Merina Dahal Pankaj Koirala Siriwan Nirmal Fahad Al-Asmari Baojun Xu 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1109-1117,共9页
Betalains are natural coloring pigments with betalamic acid as the core structure of all subclasses.Besides their coloring properties,betalains exhibit various biological activities,including antioxidant and anti-infl... Betalains are natural coloring pigments with betalamic acid as the core structure of all subclasses.Besides their coloring properties,betalains exhibit various biological activities,including antioxidant and anti-inflammatory properties,which are highly imperative.Further in-vivo studies reported that betalains protect various body organs,leading to health enhancement.Body organs,including the heart,liver,kidney,lung,etc.,are important for a healthy life.However,these organs can be affected or damaged by various stress factors,toxicants,and harmful substances.Recent studies have claimed that betalains could protect all vital organs of the body through antioxidant and anti-inflammatory mechanisms.This review article described the in-vivo antioxidant and anti-inflammatory activities of betalains in various cell-line or animal models.A comprehensive discussion has been provided on the mechanism of action of betalains in protecting various body organs,including cardio-protective effect,hepato-protective ability,renal protection capacity,repro-protective ability,neuro-protective effect,lung protection,and gut protection ability.Finally,future research directions and conclusions have been outlined. 展开更多
关键词 BETALAINS antioxidant ANTI-INFLAMMATORY BIOACTIVITIES Ogans-protection
下载PDF
Melatonin mitigates cold-induced damage to pepper seedlings by promoting redox homeostasis and regulating antioxidant profiling
9
作者 Muhammad Ahsan Altaf Yuanyuan Hao +9 位作者 Huangying Shu Weiheng Jin Chuhao Chen Lin Li Yu Zhang Muhammad Ali Mumtaz Huizhen Fu Shanhan Cheng Guopeng Zhu Zhiwei Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期532-544,共13页
This study assessed the influence of exogenous ME in the mitigation of cold damage in pepper seedlings. Melatonin(ME) is a dynamic molecule that helps plants cope with stress in several ways. Cold stress(CS) is one of... This study assessed the influence of exogenous ME in the mitigation of cold damage in pepper seedlings. Melatonin(ME) is a dynamic molecule that helps plants cope with stress in several ways. Cold stress(CS) is one of the most important environmental factors that restrict plant growth and yield. Pepper(Capsicum annuum L.) is a valuable commercial crop, highly sensitive to CS. Thus, identifying an efficient strategy to mitigate cold damage is critical for long-term pepper production. For this purpose, the roots of pepper seedlings were pretreated with ME(5 μmol · L^(-1)) and exposed to CS for 7 d. The results indicated that CS suppressed pepper growth, hampered photosynthetic capacity, and damaged root architecture in pepper plants. In contrast, the production of reactive oxygen species(ROS), malondialdehyde(MDA), electrolyte leakage(EL), proline, and soluble sugars were enhanced in plants under CS. ME(5 μmol · L^(-1)) pretreatment reduced the negative effects of CS by recovering plant growth, root traits, gas exchange elements, and pigment molecules compared to CS control treatment. Furthermore, ME application efficiently reduced oxidative stress markers [hydrogen peroxide(H_(2)O_(2)), superoxide ion(O_(2)^(·-)), EL, and MDA] while increasing proline and soluble sugar content in pepper leaves. ME application combined with CS further increased antioxidant enzymes and related gene expression. Collectively, our results confirmed the mitigating potential of ME supplementation for CS by maintaining pepper seedling growth,improving the photosynthesis apparatus, regulating pigments, and osmolyte content. 展开更多
关键词 PEPPER MELATONIN Cold stress antioxidant enzyme Root trait
下载PDF
Effect of antioxidants on the efficiency of jet milling and the powder characteristics of Sm2Co17 permanent magnets
10
作者 Da-Shuai Xu Lei Liu +6 位作者 Jian-Hui Yuan Bo Zhou Chuang-Hui Dong Feng-Qing Wang Yong Ding Ying-Li Sun A-Ru Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期615-620,共6页
This study investigated the effect of antioxidants on the grinding efficiency,magnetic powder characteristics,microstructure,and magnetic properties of 2:17 type SmCo permanent magnet materials.The results show that a... This study investigated the effect of antioxidants on the grinding efficiency,magnetic powder characteristics,microstructure,and magnetic properties of 2:17 type SmCo permanent magnet materials.The results show that adding antioxidants helps improve the dispersion among magnetic powders,leading to a 33.3%decrease in jet milling time and a 15.8%increase in magnet powder production yield.Additionally,adding antioxidants enhances the oxidation resistance of the magnetic powders.After being stored in a constant temperature air environment at 25C for 48 h,the O content in the powder decreased by 33%compared to samples without antioxidants.While in the magnet body,the O content decreased from 0.21 wt.%to 0.14 wt.%,which helps increase the effective Sm content and domain wall pinning uniformity in the magnet.Excellent magnetic properties were obtained in the magnet with added antioxidants:B_(r)=11.6 kGs,SF=79.6%,H_(cj)=16.8 kOe,and(BH)_(max)=32.5 MGOe. 展开更多
关键词 antioxidant SmCo permanent magnet oxidation resistance grinding efficiency
原文传递
Levisticum officinale extract protects against CCl4-induced hepatotoxicity through anti-inflammatory,anti-fibrotic,and antioxidant properties in rats
11
作者 Nahid Ghaedi Iran Pouraboli +1 位作者 Mansour Mirtadzadini Mohammad-mehdi Moeini-aghtaie 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第8期331-340,共10页
Objective:To investigate the hepatoprotective effects of Levisticum officinale extract on CCl4-induced hepatotoxicity.Methods:Different doses of Levisticum officinale extract were given orally to rats for 10 days,then... Objective:To investigate the hepatoprotective effects of Levisticum officinale extract on CCl4-induced hepatotoxicity.Methods:Different doses of Levisticum officinale extract were given orally to rats for 10 days,then rats received a single dose of CCl4(2.5 mL/kg,50%v/v in liquid paraffin).Biochemical and histopathological assays were performed to assess the effects of the extract on liver function and architecture.Moreover,antioxidant and oxidative markers as well as inflammatory and fibrotic indicators were measured.Results:Pretreatment with Levisticum officinale extract significantly mitigated CCl4-induced damage to liver structure,improved serum levels of alanine aminotransferase,aspartate aminotransferase,alkaline phosphatase,urea,total bilirubin,and total protein,enhanced glutathione content and superoxide dismutase and catalase activities in the liver,as well as decreased plasma and hepatic malondialdehyde levels.Immunohistochemical results demonstrated that the extract reduced Ki-67 andα-SMA expression and Masson’s trichrome staining revealed decreased liver collagen in rats treated with Levisticum officinale extract.Moreover,Levisticum officinale extract markedly decreased the gene expressions of TNF-α,IL-6,TGF-β1,MCP-1,and COX-2.Conclusions:Levisticum officinale extract exerts hepatoprotective effects on CCl4-induced hepatotoxicity through antioxidant,anti-inflammatory,and anti-fibrotic activities. 展开更多
关键词 Levisticum officinale CCL4 Inflammation Liver toxicity antioxidant
下载PDF
The extraction of effective components and an antioxidant activity study of Tulipa edulis
12
作者 Doudou Zhang Dong Xiao +5 位作者 Tingting Yin Shuangzhi Zhao Olena Zhur Xun Xiao Hailun He Leilei Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期276-286,共11页
Plant extracts from natural sources are an excellent choice for food additives and natural antioxidants.In this study,the active components of Tulipa edulis were extracted and analysed,and their antioxidant capacity w... Plant extracts from natural sources are an excellent choice for food additives and natural antioxidants.In this study,the active components of Tulipa edulis were extracted and analysed,and their antioxidant capacity was measured.Then,the crude extract mixture was separated and purified using a Sephadex LH-20 gel,and the antioxidant activity of the purified products was determined.Human umbilical vein endothelial human umbilical vein endothelial cells(HUVEC)cells were treated with 35 mmol/L glucose to construct a model of oxidative stress.Then,the cells were treated with the active component to observe whether the products of T.edulis could have a good protective effect on HUVEC cells induced by glucose.Transcriptome analysis was also performed on HUVEC cells after same treatment to explore the possible mechanism of the component F2 protecting HUVEC cells from oxidative stress induced by high glucose.The results showed that component F2 obtained from T.edulis has strong antioxidant activity.Moreover,F2 can play a strong antioxidant protective role in HUVEC cells.Meanwhile,the gene expression of heme oxygenase 1(HO-1),γ-glutamyl cysteine ligase catalytic subunit(GCLC)and NAD(P)H quinone oxidoreductase-1(NQO1)in HUVEC cells was up-regulated after treated with F2.This study provides reference value for the further development and application of T.edulis and the d evelopment of functional food. 展开更多
关键词 Tulipa edulis Oxidative stress PURIFICATION antioxidant
下载PDF
Aldo-Keto reductase 1C3 reduces myocardial cell damage after acute myocardial infarction by activating the Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2-antioxidant response element pathway to inhibit ferroptosis
13
作者 Wang MIAO Yun-Zhao HU 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第9期899-912,共14页
Background Acute myocardial infarction(AMI)is a high-risk cardiovascular condition associated with increased cellular damage and oxidative stress.Aldo-Keto Reductase 1C3(AKR1C3)is a stress-regulating gene.Nevertheless... Background Acute myocardial infarction(AMI)is a high-risk cardiovascular condition associated with increased cellular damage and oxidative stress.Aldo-Keto Reductase 1C3(AKR1C3)is a stress-regulating gene.Nevertheless,its specific role and mechanisms regarding AMI remain unclear.Methods We assessed cardiac function through echocardiography;tissue damage was evaluated using Hematoxylin and Eosin(HE)and Masson trichrome staining.AKR1C3 expression levels were measured through Reverse transcription-quantitative polymerase chain reaction and western blot.Assessed cell viability using Cell Counting Kit-8 and lactate dehydrogenase(LDH)assays.The extent of ferroptosis was determined by measuring the levels of Fe2+,boron-dipyrromethane(BODIPY)and malondialdehyde(MDA),the glutathione/glutathione disulfide(GSH/GSSG)ratio,and the expression of Glutathione Peroxidase 4(GPX4)and Solute carrier 7A11(SLC7A11).Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2-Antioxidant response element(Keap1-Nrf2-ARE)pathway activation was analyzed through western blotting.Nrf2 was inhibited with ML385and activated with(R)-Sulforaphane to investigate the Keap1-Nrf2-ARE pathway.Results The rats in the AMI group displayed reduced heart function,more tissue damage,and lower AKR1C3 expression compared to the Sham group.Similarly,hypoxia-treated H9C2 cells showed reduced viability,and decreased AKR1C3 expression.Overexpressing AKR1C3 in H9C2 cells enhanced viability.Knocking down AKR1C3 exhibited the opposite effect.Of the inhibitors tested,Ferrostatin-1 most effectively restored cell viability in hypoxia-treated H9C2 cells.Moreover,H9C2 cells subjected to hypoxia suggested Keap1-Nrf2-ARE pathway inhibition.Overexpressing AKR1C3 reduced ferroptosis and activated the Keap1-Nrf2-ARE pathway in hypoxia-treated cells,knocking down AKR1C3 exhibited the opposite effect.Further experiments using ML385 in hypoxia-treated H9C2 cells with overexpressed AKR1C3 showed decreased viability and increased ferroptosis compared to the control.Using(R)-Sulforaphane in hypoxia-treated H9C2 cells with knocked-down AKR1C3 exhibited the opposite effect.Conclusion This study's findings indicate that AKR1C3 plays a role in regulating ferroptosis in myocardial cells,with the Keap1-Nrf2-ARE pathway likely being a key mechanism behind it. 展开更多
关键词 damage antioxidant MYOCARDIAL
下载PDF
Melatonin Alleviates Abscisic Acid Deficiency Inhibition on Photosynthesis and Antioxidant Systems in Rice under Salt Stress
14
作者 Feiyu Yan Xin Chen +7 位作者 Zhenzhen Wang Yuxuan Xia Dehui Zheng Sirui Xue Hongliang Zhao Zhiwei Huang Yuan Niu Guoliang Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1421-1440,共20页
Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study inves... Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study investigated the endogenous levels of melatonin and abscisic acid in rice by using exogenous melatonin,abscisic acid,and their synthetic inhibitors,and examined their interactions under salt stress.The research results indicate that melatonin and abscisic acid can improve rice salt tolerance.Melatonin alleviated the salt sensitivity caused by abscisic acid deficiency,increased antioxidant enzyme activity and antioxidant content in rice treated with abscisic acid synth-esis inhibitors,and reduced total reactive oxygen species content and thiobarbituric acid reactive substance accu-mulation.Melatonin also increased the activity of key photosynthetic enzymes and the content of photosynthetic pigments,maintaining the parameters of photosynthetic gas exchange and chlorophyllfluorescence.In summary,melatonin alleviated the effects of abscisic acid deficiency on photosynthesis and antioxidant systems in rice and improved salt tolerance.This study is beneficial for expanding the understanding of melatonin regulation of crop salt tolerance. 展开更多
关键词 MELATONIN abscisic acid salt stress RICE PHOTOSYNTHESIS antioxidant system
下载PDF
Preparation,characterization and antioxidant activity analysis of three Maillard glycosylated bone collagen hydrolysates from chicken,porcine and bovine
15
作者 Liwei Qi Hongru Zhang +2 位作者 Yujie Guo Hong Liu Chunhui Zhang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2002-2013,共12页
Bone collagen hydrolysates(peptides)derived from byproduct of animal product processing have been used to produce commercially valuable products due to their potential antioxidant activity.Maillard glycosylated reacti... Bone collagen hydrolysates(peptides)derived from byproduct of animal product processing have been used to produce commercially valuable products due to their potential antioxidant activity.Maillard glycosylated reaction is considered as a promising method to enhance the antioxidant activity of peptides.Hence,this research aims at investigating the Maillard glycosylation activity and antioxidant activity of bone collagen hydrolysates from different sources.In this study,3 glycosylated bone collagen hydrolysates were prepared and characterized,and cytotoxicity and antioxidant activity were analyzed and evaluated.The free amino groups loss,browning intensity,and fluorescence intensity of G-Cbcp(glycosylated chicken bone collagen hydrolysates(peptides))were the heaviest,followed by G-Pbcp(glycosylated porcine bone collagen hydrolysates(peptides))and G-Bbcp(glycosylated bovine bone collagen hydrolysates(peptides)).The results of amino acid analysis showed that amino acid composition of different bone collagen hydrolysates was significantly different and the amino acid decreased to different degrees after Maillard glycosylated reaction,which may lead to differences in Maillard glycosylated reaction activity.Furthermore,the 3 glycosylated hydrolysates showed no significant cytotoxicity.The results showed that glycosylation process significantly increased the antioxidant activity of bone collagen hydrolysates,and G-Cbcp showed the strongest antioxidant activity,followed by G-Pbcp and G-Bbcp.Therefore,compared with the bone collagen hydrolysates,3 glycosylated hydrolysates showed significant characteristic and structural changes,and higher antioxidant activity. 展开更多
关键词 Bone collagen hydrolysates Glycosylation reaction antioxidant activity
下载PDF
Sodium nitroprusside as a signal molecule for up-regulating membrane characteristics,antioxidant defense system to improve flax productivity under water stress
16
作者 N.M.Al-Ashkar B.A.Bakry +2 位作者 H.M.S.El-Bassiouny M.M.S.Abdallah M.S.Sadak 《Oil Crop Science》 CSCD 2024年第3期160-169,共10页
Water stress is a critical environmental adversity that significantly impacts the growth,development,and yield of flax plants.In this study,flax seeds were cultivated under different water irrigation requirements(WIR)... Water stress is a critical environmental adversity that significantly impacts the growth,development,and yield of flax plants.In this study,flax seeds were cultivated under different water irrigation requirements(WIR)(100%,75%,and 50%)to investigate the effects of exogenously supplied nitric oxide(NO)donor sodium nitroprusside(SNP)as foliar treatments at concentrations of 0.0 mmol/L,0.5 mmol/L,1.0 mmol/L,and 2.0 mmol/L.Drought stress led to a significant decrease in plant growth,photosynthetic pigments,yield components such as oil and total carbohydrate percentage.It also resulted in an increase in leaf H2O2 production,lipid peroxidation levels and activities of enzymatic antioxidants including polyphenol oxidase,superoxide dismutase,and nitrate reductase enzymes.However,foliar application of SNP improved photosynthetic pigments and antioxidant defense system which mitigated the negative impact of water stress on growth and yield productivity by reducing oxidative damage caused by reactive oxygen species accumulation.The use of SNP also decreased H_(2)O_(2) accumulation levels,lipid peroxidation levels,and improved membrane stability.SNP treatment at concentration of 2 mmol/L showed superior results compared to other concentrations with extremely significant increases observed in yield characteristics such as oil content,total carbohydrate percentages,and unsaturated fatty acids to saturated fatty acids ratio. 展开更多
关键词 FLAX Fatty acid Sodium nitroprusside antioxidant enzymes YIELD
下载PDF
Antibacterial,antioxidant and antiproliferation activities of essential oils and ethanolic extracts from Chinese mugwort(Artemisia vulgaris L.)leaf in Shanxi
17
作者 Hu-Tan-Xian Zhang Feng-Ru Lyu +5 位作者 Jia-Tong He Chen-Yu Liu Zheng-Yang Zhou Rui-Jie Wu Zi-Qing Zhao He Li 《Traditional Medicine Research》 2024年第1期47-56,共10页
Background:Artemisia vulgaris,a medicinal aromatic plant,is widely used as a food item,tonic pharmaceutical,and cosmetic industry additive owing to its antibacterial,antihypertensive,hepatoprotective,antioxidant,and a... Background:Artemisia vulgaris,a medicinal aromatic plant,is widely used as a food item,tonic pharmaceutical,and cosmetic industry additive owing to its antibacterial,antihypertensive,hepatoprotective,antioxidant,and antispasmodic properties.But the effect of different geographic locations on the chemical composition and bioactivities of its extracts is unclear.Methods:Biological activities of essential oils and ethanol extracts of three varieties of Artemisia vulgaris leaves,which are grown in Shanxi province China,were studied.Results:Gas chromatography-mass spectrometry analysis revealed that the main components of essential oils were terpenes and ketones.Essential oils and ethanol extract of Artemisia vulgaris leaves possessed good antioxidant activities,and their half maximal inhibitory concentrations determined using 1,1-diphenyl-2-picrylhydrazyl and 2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate)assays were 57.0 and 22.9μg/mL,respectively.The essential oils also exhibited remarkable antibacterial activity against three foodborne pathogenic bacterial strains.The ethanol extract presented a high anticancer activity against the MGC-803 human gastric cancer cell line.Conclusion:These biological activities were well correlated with the composition of the extract and EOs,which in turn is affected by the genetic composition of Artemisia vulgaris and geographic location and diverse climatic condition under which it is grown.These findings demonstrate the remarkable potential of Artemisia vulgaris as a valuable source of antioxidant,antibacterial,and anticancer agents. 展开更多
关键词 Artemisia vulgaris essential oils ethanol extracts antioxidant ANTIPROLIFERATION
下载PDF
Alkaline sphingomyelinase deficiency impairs intestinal mucosal barrier integrity and reduces antioxidant capacity in dextran sulfate sodium-induced colitis
18
作者 Ye Tian Xin Li +7 位作者 Xu Wang Si-Ting Pei Hong-Xin Pan Yu-Qi Cheng Yi-Chen Li Wen-Ting Cao Jin-Dong Ding Petersen Ping Zhang 《World Journal of Gastroenterology》 SCIE CAS 2024年第10期1405-1419,共15页
BACKGROUND Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology.Alkaline sphingomyelinase(alk-SMase)is specifically expressed by intestinal epithelial cells,and has been reported ... BACKGROUND Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology.Alkaline sphingomyelinase(alk-SMase)is specifically expressed by intestinal epithelial cells,and has been reported to play an anti-inflammatory role.However,the underlying mechanism is still unclear.AIM To explore the mechanism of alk-SMase anti-inflammatory effects on intestinal barrier function and oxidative stress in dextran sulfate sodium(DSS)-induced colitis.METHODS Mice were administered 3%DSS drinking water,and disease activity index was determined to evaluate the status of colitis.Intestinal permeability was evaluated by gavage administration of fluorescein isothiocyanate dextran,and bacterial translocation was evaluated by measuring serum lipopolysaccharide.Intestinal epithelial cell ultrastructure was observed by electron microscopy.Western blotting and quantitative real-time reverse transcription-polymerase chain reaction were used to detect the expression of intestinal barrier proteins and mRNA,respectively.Serum oxidant and antioxidant marker levels were analyzed using commercial kits to assess oxidative stress levels.RESULTS Compared to wild-type(WT)mice,inflammation and intestinal permeability in alk-SMase knockout(KO)mice were more severe beginning 4 d after DSS induction.The mRNA and protein levels of intestinal barrier proteins,including zonula occludens-1,occludin,claudin-3,claudin-5,claudin-8,mucin 2,and secretory immunoglobulin A,were significantly reduced on 4 d after DSS treatment.Ultrastructural observations revealed progressive damage to the tight junctions of intestinal epithelial cells.Furthermore,by day 4,mitochondria appeared swollen and degenerated.Additionally,compared to WT mice,serum malondialdehyde levels in KO mice were higher,and the antioxidant capacity was significantly lower.The expression of the transcription factor nuclear factor erythroid 2-related factor 2(Nrf2)in the colonic mucosal tissue of KO mice was significantly decreased after DSS treatment.mRNA levels of Nrf2-regulated downstream antioxidant enzymes were also decreased.Finally,colitis in KO mice could be effectively relieved by the injection of tertiary butylhydroquinone,which is an Nrf2 activator.CONCLUSION Alk-SMase regulates the stability of the intestinal mucosal barrier and enhances antioxidant activity through the Nrf2 signaling pathway. 展开更多
关键词 Alkaline sphingomyelinase Intestinal mucosal barrier antioxidant capacity Dextran sulfate sodium-induced colitis nuclear factor erythroid 2-related factor 2
下载PDF
Significance of oxidative stress and antioxidant capacity tests as biomarkers of premature ovarian insufficiency: A case control study
19
作者 Kaoru Kakinuma Toshiyuki Kakinuma 《World Journal of Clinical Cases》 SCIE 2024年第3期479-487,共9页
BACKGROUND Premature ovarian insufficiency(POI)is a condition that causes secondary amenorrhea owing to ovarian hypofunction at an early stage.Early follicular depletion results in intractable infertility,thereby cons... BACKGROUND Premature ovarian insufficiency(POI)is a condition that causes secondary amenorrhea owing to ovarian hypofunction at an early stage.Early follicular depletion results in intractable infertility,thereby considerably reducing the quality of life of females.Given the continuum in weakened ovarian function,progressing from incipient ovarian failure(IOF)to transitional ovarian failure and further to POI,it is necessary to develop biomarkers for predicting POI.The oxidative stress states in IOF and POI were comprehensively evaluated via oxidative stress[diacron-reactive oxygen metabolites(d-ROMs)]test and anti-oxidant capacity[biological antioxidant potential(BAP)].METHODS Females presenting with secondary amenorrhea over 4 mo and a follicle stimulating hormone level of>40 mIU/mL were categorized into the POI group.Females presenting with a normal menstrual cycle and a follicle stimulating hormone level of>10.2 mIU/mL were categorized into the IOF group.Healthy females without ovarian hypofunction were categorized into the control group.Among females aged<40 years who visited our hospital from January 2021 to June 2022,we recruited 11 patients into both POI and IOF groups.For the potential antioxidant capacity,the relative oxidative stress index(BAP/d-ROMs×100)was calculated,and the oxidative stress defense system was comprehensively evaluated.RESULTS d-ROMs were significantly higher in the POI and IOF groups than in the control group,(478.2±58.7 U.CARR,434.5±60.6 U.CARR,and 341.1±35.1 U.CARR,respectively)(U.CARR is equivalent to 0.08 mg/dL of hydrogen peroxide).However,no significant difference was found between the POI and IOF groups.Regarding BAP,no significant difference was found between the control,IOF,and POI groups(2078.5±157.4μmol/L,2116.2±240.2μmol/L,and 2029.0±186.4μmol/L,respectively).The oxidative stress index was significantly higher in the POI and IOF groups than in the control group(23.7±3.3,20.7±3.6,and 16.5±2.1,respectively).However,no significant difference was found between the POI and IOF groups.CONCLUSION High levels of oxidative stress suggest that evaluating the oxidative stress state may be a useful indicator for the early detection of POI. 展开更多
关键词 Premature ovarian insufficiency Oxidative stress Diacron-reactive oxygen metabolites test Biological antioxidant potential INFERTILITY BIOMARKER
下载PDF
Effects of Potassium-Solubilizing Bacteria on Growth, Antioxidant Activity and Expression of Related Genes in Fritillaria taipaiensis P. Y. Li
20
作者 Jiaqi Lang Mingyan Ye +5 位作者 Ya Luo Yueheng Wang Zhifen Shi Xiaotian Kong Xuan Li Nong Zhou 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第4期789-806,共18页
This study aimed to examine the effects of inoculating Fritillaria taipaiensis P.Y.Li leaves with different strains ofpotassium-solubilizing bacteria (KSB), or combinations thereof, focusing on aspects of photosynthes... This study aimed to examine the effects of inoculating Fritillaria taipaiensis P.Y.Li leaves with different strains ofpotassium-solubilizing bacteria (KSB), or combinations thereof, focusing on aspects of photosynthesis and physiologicaland biochemical characteristics. At present, some studies have only studied the rhizosphere microbialcommunity characteristics of F. taipaiensis and have not discussed the effects of different microbial species on thegrowth promotion of F. taipaiensis. This paper will start from the perspective of potassium-solubilizing bacteria toconduct an in-depth study. Seed cultivation commenced at the base with three different KSBs in early October2022. The growth of F. taipaiensis leaves was observed after different treatments. Both single-plant and compoundinoculations were executed. A total of eight treatment groups were established, with aseptic fertilizer and sterilizedsoil functioning as the control group. The results reveal that intercellular CO_(2) concentration (Ci), stomatal conductance(Gs), and transpiration rate (Tr) were at their apex in the S7 group. Most treatment groups exhibited anincrease in leaf area, photosynthetic pigment content, soluble sugar, soluble protein, Superoxide Dismutase(SOD), Peroxidase (POD), Catalase (CAT) activities, and proline content. The expression levels of POD, SOD,and CAT genes were evaluated, following inoculation with different KSB. The highest was the S7 group. Theinoculation with various KSB, or combinations thereof, appears to bolster the growth and development of F. taipaiensis.The composite inoculation group S7, comprising Bacillus cereus, Burkholderia cepacia, and Bacillus subtilis,manifested the most favorable impact on the diverse indices of F. taipaiensis, thereby furnishing valuableinsights for the selection of bacterial fertilizer in the artificial cultivation of F. taipaiensis. 展开更多
关键词 Fritillaria taipaiensis BACTERIA antioxidant enzyme genes leaf physiology and biochemistry photosynthetic characteristics
下载PDF
上一页 1 2 172 下一页 到第
使用帮助 返回顶部