期刊文献+
共找到1,614篇文章
< 1 2 81 >
每页显示 20 50 100
Reading Loss in Arabic Language During COVID-19 in the UAE and Proposed Solutions:The Perspectives of Primary-Grade Arabic Language Teachers
1
作者 Karima Almazroui Muhra Albloushi 《Sociology Study》 2024年第2期107-118,共12页
The COVID-19 pandemic caused significant disruptions in the field of education worldwide,including in the United Arab Emirates.Teachers and students had to adapt to remote learning and virtual classrooms,leading to va... The COVID-19 pandemic caused significant disruptions in the field of education worldwide,including in the United Arab Emirates.Teachers and students had to adapt to remote learning and virtual classrooms,leading to various challenges in maintaining educational standards.The sudden transition to remote teaching could have a negative impact on students’reading abilities,especially in the Arabic language.To gain insight into the unique challenges encountered by Arabic language teachers in the UAE,a survey was conducted to explore their assessment of teaching quality,student-teacher interaction,and learning outcomes amidst the COVID-19 pandemic.The results of the survey revealed a significant decline of student reading abilities and identified several major issues in online Arabic language teaching.These issues included limited interaction between students and teachers,challenges in monitoring students’class participation and performance,and challenges in effectively assessing students’reading skills.The results also demonstrated some other challenges faced by Arabic language teachers,including a lack of preparedness,a lack of subscription to relevant platforms,and a lack of resources for online learning.Several solutions to these challenges are proposed,including reevaluating the balance between depth and breadth in the curriculum,integrating language skills into the curriculum more effectively,providing more comprehensive teacher professional development,implementing student grouping strategies,utilizing retired and expert teachers in specific content areas,allocating time for interventions,and improving support from both teachers and parents to ensure the quality of online learning. 展开更多
关键词 reading loss arabic language teachers primary grades online learning United arab Emirates
下载PDF
膏盐岩-碳酸盐岩共生层系岩石微相及储层特征——以阿布扎比B油田侏罗系Arab组为例
2
作者 彭渝婷 刘波 +7 位作者 石开波 刘航宇 付英潇 宋彦辰 王恩泽 宋本彪 邓西里 叶禹 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期639-656,共18页
为探究膏盐岩–碳酸盐岩共生层系强非均质性问题,基于岩芯及测井资料,探究阿布扎比B油田Arab组岩石微相类型,分析各类微相的储层特征及优质储层主控因素。Arab组可识别出12种微相类型(MF1~MF12),微相类型及组合指示其为局限–蒸发背景... 为探究膏盐岩–碳酸盐岩共生层系强非均质性问题,基于岩芯及测井资料,探究阿布扎比B油田Arab组岩石微相类型,分析各类微相的储层特征及优质储层主控因素。Arab组可识别出12种微相类型(MF1~MF12),微相类型及组合指示其为局限–蒸发背景下萨布哈潮坪–潟湖–障壁滩沉积体系。微相类型控制储层品质,其中MF2及MF9~MF12孔喉较粗,连通性好,孔隙度和渗透率较高,是储层发育有利微相类型。MF2和MF10发育白云岩储层,储集空间以晶间孔、残余粒间孔及粒内溶孔为主;MF9,MF11和MF12发育颗粒灰岩储层,储集空间以粒间(溶)孔、铸模孔及粒内溶孔为主。相对海平面的震荡性变化导致各沉积相带在纵向上的有序叠置,不同沉积相带之间或同一沉积相带内微相类型及成岩作用的差异性是Arab组储层强非均质性的根本原因。障壁滩和潮上带是优质储层发育的有利相带,其中障壁滩相优质储层原生粒间孔保持较好,并叠加显著的早期暴露溶蚀,导致次生孔隙的产生和孔隙结构的改善;潮上带优质储层的发育受控于早期白云石化和准同生溶蚀作用,白云石化改善孔隙结构,有利于早期孔隙保存,分散状硬石膏的早期溶蚀产生大量次生孔隙,显著地改善了储层物性。 展开更多
关键词 膏盐岩–碳酸盐岩共生层系 arab 岩石微相类型 储层特征 储层主控因素
下载PDF
Arabic Optical Character Recognition:A Review 被引量:1
3
作者 Salah Alghyaline 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期1825-1861,共37页
This study aims to review the latest contributions in Arabic Optical Character Recognition(OCR)during the last decade,which helps interested researchers know the existing techniques and extend or adapt them accordingl... This study aims to review the latest contributions in Arabic Optical Character Recognition(OCR)during the last decade,which helps interested researchers know the existing techniques and extend or adapt them accordingly.The study describes the characteristics of the Arabic language,different types of OCR systems,different stages of the Arabic OCR system,the researcher’s contributions in each step,and the evaluationmetrics for OCR.The study reviews the existing datasets for the Arabic OCR and their characteristics.Additionally,this study implemented some preprocessing and segmentation stages of Arabic OCR.The study compares the performance of the existing methods in terms of recognition accuracy.In addition to researchers’OCRmethods,commercial and open-source systems are used in the comparison.The Arabic language is morphologically rich and written cursive with dots and diacritics above and under the characters.Most of the existing approaches in the literature were evaluated on isolated characters or isolated words under a controlled environment,and few approaches were tested on pagelevel scripts.Some comparative studies show that the accuracy of the existing Arabic OCR commercial systems is low,under 75%for printed text,and further improvement is needed.Moreover,most of the current approaches are offline OCR systems,and there is no remarkable contribution to online OCR systems. 展开更多
关键词 arabic Optical Character Recognition(OCR) arabic OCR software arabic OCR datasets arabic OCR evaluation
下载PDF
Uncovering the epidemiology of bladder cancer in the Arab world: A review of risk factors, molecular mechanisms, and clinical features
4
作者 Noura F.Abbas Marc R.Aoude +1 位作者 Hampig R.Kourie Humaid OAl-Shamsi 《Asian Journal of Urology》 CSCD 2024年第3期406-422,共17页
Objective:Bladder cancer(BC)is a significant public health concern in the Middle East and North Africa,but the epidemiology and clinicopathology of the disease and contributors to high mortality in this region remain ... Objective:Bladder cancer(BC)is a significant public health concern in the Middle East and North Africa,but the epidemiology and clinicopathology of the disease and contributors to high mortality in this region remain poorly understood.The aim of this systematic review was to investigate the epidemiological features of BC in the Arab world and compare them to those in Western countries in order to improve the management of this disease.Methods:An extensive electronic search of the PubMed/PMC and Cochrane Library databases was conducted to identify all articles published until May 2022,following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines.A total of 95 articles were included in the final analysis after title,abstract,and full-text screening,with additional data obtained from the GLOBOCAN and WHO 2020 databases. 展开更多
关键词 Bladder cancer EPIDEMIOLOGY Risk factor Biomarker SCHISTOSOMIASIS arab world UROLOGY
下载PDF
Improving the Segmentation of Arabic Handwriting Using Ligature Detection Technique
5
作者 Husam Ahmad Al Hamad Mohammad Shehab 《Computers, Materials & Continua》 SCIE EI 2024年第5期2015-2034,共20页
Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthr... Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthrough various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexityarises from the diverse array of writing styles among individuals, coupled with the various shapes that a singlecharacter can take when positioned differently within document images, rendering the task more perplexing. Inthis study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locatethe local minima of the vertical and diagonal word image densities to precisely identify the segmentation pointsbetween the cursive letters. The proposed method starts with pre-processing the word image without affectingits main features, then calculates the directions pixel density of the word image by scanning it vertically and fromangles 30° to 90° to count the pixel density fromall directions and address the problem of overlapping letters, whichis a commonly attitude in writing Arabic texts by many people. Local minima and thresholds are also determinedto identify the ideal segmentation area. The proposed technique is tested on samples obtained fromtwo datasets: Aself-curated image dataset and the IFN/ENIT dataset. The results demonstrate that the proposed method achievesa significant improvement in the proportions of cursive segmentation of 92.96% on our dataset, as well as 89.37%on the IFN/ENIT dataset. 展开更多
关键词 arabic handwritten SEGMENTATION image processing ligature detection technique intelligent recognition
下载PDF
AMachine Learning Approach to Cyberbullying Detection in Arabic Tweets
6
作者 Dhiaa Musleh Atta Rahman +8 位作者 Mohammed Abbas Alkherallah Menhal Kamel Al-Bohassan Mustafa Mohammed Alawami Hayder Ali Alsebaa Jawad Ali Alnemer Ghazi Fayez Al-Mutairi May Issa Aldossary Dalal A.Aldowaihi Fahd Alhaidari 《Computers, Materials & Continua》 SCIE EI 2024年第7期1033-1054,共22页
With the rapid growth of internet usage,a new situation has been created that enables practicing bullying.Cyberbullying has increased over the past decade,and it has the same adverse effects as face-to-face bullying,l... With the rapid growth of internet usage,a new situation has been created that enables practicing bullying.Cyberbullying has increased over the past decade,and it has the same adverse effects as face-to-face bullying,like anger,sadness,anxiety,and fear.With the anonymity people get on the internet,they tend to bemore aggressive and express their emotions freely without considering the effects,which can be a reason for the increase in cyberbullying and it is the main motive behind the current study.This study presents a thorough background of cyberbullying and the techniques used to collect,preprocess,and analyze the datasets.Moreover,a comprehensive review of the literature has been conducted to figure out research gaps and effective techniques and practices in cyberbullying detection in various languages,and it was deduced that there is significant room for improvement in the Arabic language.As a result,the current study focuses on the investigation of shortlisted machine learning algorithms in natural language processing(NLP)for the classification of Arabic datasets duly collected from Twitter(also known as X).In this regard,support vector machine(SVM),Naive Bayes(NB),Random Forest(RF),Logistic regression(LR),Bootstrap aggregating(Bagging),Gradient Boosting(GBoost),Light Gradient Boosting Machine(LightGBM),Adaptive Boosting(AdaBoost),and eXtreme Gradient Boosting(XGBoost)were shortlisted and investigated due to their effectiveness in the similar problems.Finally,the scheme was evaluated by well-known performance measures like accuracy,precision,Recall,and F1-score.Consequently,XGBoost exhibited the best performance with 89.95%accuracy,which is promising compared to the state-of-the-art. 展开更多
关键词 Supervised machine learning ensemble learning CYBERBULLYING arabic tweets NLP
下载PDF
Enhancement of the Antigenotoxic and Antioxidant Actions of Eugenol from Spice Clove and the Stabilizer Gum Arabic on Colorectal Carcinogenesis
7
作者 Nayanna de Oliveira Ramos Melo Lucas Gabriel da Costa Marques +5 位作者 Humberto Maia Costa Neto Matheus De Sousa Silva Francisco Vagnaldo Fechine Jamacaru Bruno Coêlho Cavalcanti Antônio Adailson De Sousa Silva Conceição Aparecida Dornelas 《Food and Nutrition Sciences》 CAS 2024年第1期71-100,共30页
Spices are defined as any aromatic condiment of plant origin used to alter the flavor and aroma of foods. Besides flavor and aroma, many spices have antioxidant activity, mainly related to the presence in cloves of ph... Spices are defined as any aromatic condiment of plant origin used to alter the flavor and aroma of foods. Besides flavor and aroma, many spices have antioxidant activity, mainly related to the presence in cloves of phenolic compounds, such as flavonoids, terpenoids and eugenol. In turn, the most common uses of gum arabic are in the form of powder for addition to soft drink syrups, cuisine and baked goods, specifically to stabilize the texture of products, increase the viscosity of liquids and promote the leavening of baked products (e.g., cakes). Both eugenol, extracted from cloves, and gum arabic, extracted from the hardened sap of two species of the Acacia tree, are dietary constituents routinely consumed virtually throughout the world. Both of them are also widely used medicinally to inhibit oxidative stress and genotoxicity. The prevention arm of the study included groups: Ia, IIa, IIIa, Iva, V, VI, VII, VIII. Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the same period and for an additional 9 weeks, the animals received either water, 10% GA, EUG, or 10% GA + EUG by gavage. The treatment arm of the study included groups Ib, IIb, IIIb e IVb, IX, X, XI, XII). Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the subsequent 9 weeks, the animals received either water, 10% GA, EUG or 10% GA + EUG by gavage. The novelty of this study is the investigation of their use alone and together for the prevention and treatment of experimental colorectal carcinogenesis induced by dimethylhydrazine. Our results show that the combined use of 10% gum arabic and eugenol was effective, with antioxidant action in the colon, as well as reducing oxidative stress in all colon segments and preventing and treating genotoxicity in all colon segments. Furthermore, their joint administration reduced the number of aberrant crypts and the number of aberrant crypt foci (ACF) in the distal segment and entire colon, as well as the number of ACF with at least 5 crypts in the entire colon. Thus, our results also demonstrate the synergistic effects of 10% gum arabic together with eugenol (from cloves), with antioxidant, antigenotoxic and anticarcinogenic actions (prevention and treatment) at the doses and durations studied, in the colon of rats submitted to colorectal carcinogenesis induced by dimethylhydrazine. 展开更多
关键词 EUGENOL Gum arabic CARCINOGENESIS Oxidative Stress GENOTOXICITY
下载PDF
Optimised CNN Architectures for Handwritten Arabic Character Recognition
8
作者 Salah Alghyaline 《Computers, Materials & Continua》 SCIE EI 2024年第6期4905-4924,共20页
Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.T... Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.The Arabic language includes 28 characters.Each character has up to four shapes according to its location in the word(at the beginning,middle,end,and isolated).This paper proposed 12 CNN architectures for recognizing handwritten Arabic characters.The proposed architectures were derived from the popular CNN architectures,such as VGG,ResNet,and Inception,to make them applicable to recognizing character-size images.The experimental results on three well-known datasets showed that the proposed architectures significantly enhanced the recognition rate compared to the baseline models.The experiments showed that data augmentation improved the models’accuracies on all tested datasets.The proposed model outperformed most of the existing approaches.The best achieved results were 93.05%,98.30%,and 96.88%on the HIJJA,AHCD,and AIA9K datasets. 展开更多
关键词 Optical character recognition(OCR) handwritten arabic characters deep learning
下载PDF
Effect of Gum Arabic from Acacia senegal var. kerensis as an Improver on the Rheological Properties of Wheat Flour Dough
9
作者 Roseline Mwihaki Kiama Mary Omwamba +1 位作者 George Wafula Wanjala Symon Maina Mahungu 《Food and Nutrition Sciences》 CAS 2024年第4期298-312,共15页
Dough improvers are substances with functional characteristics used in baking industry to enhance dough properties. Currently, the baking industry is faced with increasing demand for natural ingredients owing to incre... Dough improvers are substances with functional characteristics used in baking industry to enhance dough properties. Currently, the baking industry is faced with increasing demand for natural ingredients owing to increasing consumer awareness, thus contributing to the rising demand for natural hydrocolloids. Gum Arabic from Acacia senegal var. kerensis is a natural gum exhibiting excellent water binding and emulsification capacity. However, very little is reported on how it affects the rheological properties of wheat dough. The aim of this study was therefore, to determine the rheological properties of wheat dough with partial additions of gum Arabic as an improver. Six treatments were analyzed comprising of: flour-gum blends prepared by adding gum Arabic to wheat flour at different levels (1%, 2% and 3%), plain wheat flour (negative control), commercial bread flour and commercial chapati flour (positive controls). The rheological properties were determined using Brabender Farinograph, Brabender Extensograph and Brabender Viscograph. Results showed that addition of gum Arabic significantly (p chapati. These findings support the need to utilize gum Arabic from Acacia senegal var. kerensis as a dough improver. 展开更多
关键词 Gum arabic IMPROVER RHEOLOGY HYDROCOLLOIDS Wheat Dough
下载PDF
Physico-Chemical, and Sensory Properties of Mayonnaise Substitute Prepared from Chia Mucilage (Salvia hispanica L.) and Gum Arabic from Acacia senegal var. kerensis
10
作者 Lydia Apondi Odep Symon Maina Mahungu Mary Nyambeki Omwamba 《Food and Nutrition Sciences》 CAS 2024年第9期880-898,共19页
Gum Arabic (GA) from Acacia senegal var. kerensis has been approved as an emulsifier, stabilizer, thickener, and encapsulator in food processing industry. Chia mucilage, on the other hand, has been approved to be used... Gum Arabic (GA) from Acacia senegal var. kerensis has been approved as an emulsifier, stabilizer, thickener, and encapsulator in food processing industry. Chia mucilage, on the other hand, has been approved to be used as a fat and egg yolk mimic. However, both chia mucilage and gum Arabic are underutilized locally in Kenya;thus, marginal reports have been published despite their potential to alter functional properties in food products. In this study, the potential use of chia mucilage and gum Arabic was evaluated in the development of an eggless fat-reduced mayonnaise (FRM). The mayonnaise substitute was prepared by replacing eggs and partially substituting sunflower oil with chia mucilage at 15%, 30%, 45%, and 60% levels and gum Arabic at 3% while reducing the oil levels to 15%, 30%, 45%, and 60%. The effect of different concentrations of oil and chia mucilage on the physicochemical properties, for example, pH, emulsion stability, moisture content, protein, carbohydrate, fats, calories, ash, and titratable acidity using AOAC methods and sensory properties for both consumer acceptability and quantitative descriptive analysis of mayonnaise were evaluated and compared to the control with eggs and 75% sunflower oil. The results indicated that all fat-reduced mayonnaises had significantly lower energy to 493 kcal/100g and 20% fat content but higher water content of 0.74 than the control with 784 Kcal/100g calories, 77% fat and 0.39 moisture. These differences increased with increasing substitution levels of chia mucilage, as impacted on pH, carbohydrate, and protein. There was no significant difference between ash content for both fat-reduced mayonnaise and control. Sensory evaluation demonstrated that mayonnaises substituted with chia seeds mucilage and gum Arabic were accepted. All the parameters are positively correlated to overall acceptability, with flavor having the strongest correlation of r = 0.78. Loadings from principal component analysis (PCA) of 16 sensory attributes of mayonnaise showed that approximately over 66% of the variations in sensory attributes were explained by the first six principal components. This study shows good potential for chia mucilage and gum Arabic to be used as fat and egg mimetics and stabilizers, respectively, in mayonnaise with functional properties. 展开更多
关键词 MAYONNAISE Chia Mucilage Gum arabic Physicochemical Sensory Properties
下载PDF
Fireworks Optimization with Deep Learning-Based Arabic Handwritten Characters Recognition Model
11
作者 Abdelwahed Motwakel Badriyya B.Al-onazi +5 位作者 Jaber S.Alzahrani Ayman Yafoz Mahmoud Othman Abu Sarwar Zamani Ishfaq Yaseen Amgad Atta Abdelmageed 《Computer Systems Science & Engineering》 2024年第5期1387-1403,共17页
Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases wa... Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases was confined.Almost a quarter of a billion people worldwide write and speak Arabic.More historical books and files indicate a vital data set for many Arab nationswritten in Arabic.Recently,Arabic handwritten character recognition(AHCR)has grabbed the attention and has become a difficult topic for pattern recognition and computer vision(CV).Therefore,this study develops fireworks optimizationwith the deep learning-based AHCR(FWODL-AHCR)technique.Themajor intention of the FWODL-AHCR technique is to recognize the distinct handwritten characters in the Arabic language.It initially pre-processes the handwritten images to improve their quality of them.Then,the RetinaNet-based deep convolutional neural network is applied as a feature extractor to produce feature vectors.Next,the deep echo state network(DESN)model is utilized to classify handwritten characters.Finally,the FWO algorithm is exploited as a hyperparameter tuning strategy to boost recognition performance.Various simulations in series were performed to exhibit the enhanced performance of the FWODL-AHCR technique.The comparison study portrayed the supremacy of the FWODL-AHCR technique over other approaches,with 99.91%and 98.94%on Hijja and AHCD datasets,respectively. 展开更多
关键词 arabic language handwritten character recognition deep learning CLASSIFICATION parameter tuning
下载PDF
The Enforcement of Occupational Safety and Health Requirements in Public and Private Sectors in the Emirate of Abu Dhabi, the United Arab Emirates
12
作者 Alyazya Alhosani 《Occupational Diseases and Environmental Medicine》 2024年第2期78-114,共37页
Research Problem: In Abu Dhabi, limited implementation of OSH Regulations contributes to the general unawareness among employees and workers about occupational hazards and safety measures, resulting in slow responsive... Research Problem: In Abu Dhabi, limited implementation of OSH Regulations contributes to the general unawareness among employees and workers about occupational hazards and safety measures, resulting in slow responsiveness toward enforcement measures and a lack of self-regulatory approaches within companies. Purpose: The purpose of this study is to examine the implementation methods practised in Abu Dhabi with those in developed countries with established OSH regulatory bodies. Methodology: Qualitative and quantitative research methods were employed to gather primary research data. Workers from various industries in Abu Dhabi were sampled on purpose and asked to respond to questionnaires and interviews on OSH protocol awareness and implementation, and circumstances of workplace incidence. Results: The findings of this study showed that the enforcement of OSH requirements in UAE positively correlated to a reduction in the rate of work-related injury and improved business performance. The quantitative research data showed that the energy sector had the highest score (15) while the tourism sector had the lowest score (5.3) in occupational health systems and improvements in business efficiency and productivity. Implications: The outcomes of this study shed light on the importance of implementing OSH Guidelines for companies to empower their safety managers to fully enforce OSH requirements in their organisations. In conclusion, effective OSH enforcement requires cooperation between general workers and OSH managers and facilitation from business owners. 展开更多
关键词 Occupational Health and Safety Abu Dhabi The United arab Emirates IMPLEMENTATION
下载PDF
Chaotic Elephant Herd Optimization with Machine Learning for Arabic Hate Speech Detection
13
作者 Badriyya B.Al-onazi Jaber S.Alzahrani +5 位作者 Najm Alotaibi Hussain Alshahrani Mohamed Ahmed Elfaki Radwa Marzouk Heba Mohsen Abdelwahed Motwakel 《Intelligent Automation & Soft Computing》 2024年第3期567-583,共17页
In recent years,the usage of social networking sites has considerably increased in the Arab world.It has empowered individuals to express their opinions,especially in politics.Furthermore,various organizations that op... In recent years,the usage of social networking sites has considerably increased in the Arab world.It has empowered individuals to express their opinions,especially in politics.Furthermore,various organizations that operate in the Arab countries have embraced social media in their day-to-day business activities at different scales.This is attributed to business owners’understanding of social media’s importance for business development.However,the Arabic morphology is too complicated to understand due to the availability of nearly 10,000 roots and more than 900 patterns that act as the basis for verbs and nouns.Hate speech over online social networking sites turns out to be a worldwide issue that reduces the cohesion of civil societies.In this background,the current study develops a Chaotic Elephant Herd Optimization with Machine Learning for Hate Speech Detection(CEHOML-HSD)model in the context of the Arabic language.The presented CEHOML-HSD model majorly concentrates on identifying and categorising the Arabic text into hate speech and normal.To attain this,the CEHOML-HSD model follows different sub-processes as discussed herewith.At the initial stage,the CEHOML-HSD model undergoes data pre-processing with the help of the TF-IDF vectorizer.Secondly,the Support Vector Machine(SVM)model is utilized to detect and classify the hate speech texts made in the Arabic language.Lastly,the CEHO approach is employed for fine-tuning the parameters involved in SVM.This CEHO approach is developed by combining the chaotic functions with the classical EHO algorithm.The design of the CEHO algorithm for parameter tuning shows the novelty of the work.A widespread experimental analysis was executed to validate the enhanced performance of the proposed CEHOML-HSD approach.The comparative study outcomes established the supremacy of the proposed CEHOML-HSD model over other approaches. 展开更多
关键词 arabic language machine learning elephant herd optimization TF-IDF vectorizer hate speech detection
下载PDF
Tigris, Euphrates, and Shatt Al-Arab River System: Historic and Modern Attempts to Manage and Restore Iraq’s Lifeline
14
作者 Kenneth Ray Olson David R. Speidel 《Open Journal of Soil Science》 2024年第1期28-63,共36页
In Iraq, the principal rivers are the Tigris, Shatt Al-Arab and Euphrates. From their headwater sources in the mountains of eastern Türkiye, these rivers descend through valleys and gorges and flow into the uplan... In Iraq, the principal rivers are the Tigris, Shatt Al-Arab and Euphrates. From their headwater sources in the mountains of eastern Türkiye, these rivers descend through valleys and gorges and flow into the uplands of Syria and northern and central alluvial plain of Iraq. The Euphrates and Tigris Rivers confluence to form the Shatt Al-Arab river at Al-Qurnah which flows into the Persian Gulf. From sources in the Zagros Mountains other tributaries join the Tigris from the east. The Tigris and Euphrates rivers flow in a southeastern direction through the central plain and discharge into the Mesopotamian Marshes, which include permanent marshes, lakes, and riparian habitat. The rivers and their tributaries drain an area of 879,790 km<sup>2</sup> which includes almost the entire area of Iraq as well as land in Syria, Türkiye, Kuwait and Iran. The region has historical importance as part of the Fertile Crescent region and where Mesopotamian civilization first emerged. The post war reconstruction efforts in the Yusifiyah township, an important food production region for Baghdad, illustrate the importance of these water resources. In addition, the advent of soil tunnels by Iraqi insurgents within the riverine corridors will make reconstruction of this resource more complex. The primary objectives of this study are to assess lessons learned, manage, and restore the Tigris, Euphrates, and Shatt Al-Arab river system lifeline in Iraq. 展开更多
关键词 Mesopotamian Shatt Al-arab Iraq Tigris EUPHRATES Baghdad Soil Tunnels Yusifiyah
下载PDF
Karun and Shatt Al-Arab River System: Historic and Modern Attempts to Manage Iran’s Lifeline
15
作者 Kenneth Ray Olson Sergey Stanislavovich Chernyanskii 《Open Journal of Soil Science》 2024年第7期416-447,共32页
The Islamic Republic of Iran’s principal rivers are the Karun and Shatt al-Arab. The Karun River has a 950 km length. The Karun River starting point is the convergence of the Amand, Kuhrang, and Bazoft rivers. From t... The Islamic Republic of Iran’s principal rivers are the Karun and Shatt al-Arab. The Karun River has a 950 km length. The Karun River starting point is the convergence of the Amand, Kuhrang, and Bazoft rivers. From their headwater sources in the mountains of eastern Iran, these rivers descend through valleys and gorges and flow into the plains of Iran. The Shatt al-Arab River drains an area of 879,790 square kilometers which includes land in Iran, Syria, Türkiye, Kuwait, and Iraq. The Karun joins Shatt al-Arab 110 km downriver from the confluence of the Euphrates and Tigris Rivers and flows 85 km into the Persian Gulf. The Karun river flows in a southwestern direction through the central plain and provides about 10 per cent of the water balance of Iran’s largest wetland, the Shadegan, which includes permanent marshes, lakes, and riparian habitats. The article summarizes a vast array of publications on the stated topic and this civilizationally important region in order to draw additional attention to its interdependent environmental, economic and political problems the successful resolution of which is only possible with the participation of the entire research community. 展开更多
关键词 Shatt Al-arab River Iraq Karun River Baghdad Sinjar MARSHES Soil Tunnels
下载PDF
Multi-Task Learning Model with Data Augmentation for Arabic Aspect-Based Sentiment Analysis
16
作者 Arwa Saif Fadel Osama Ahmed Abulnaja Mostafa Elsayed Saleh 《Computers, Materials & Continua》 SCIE EI 2023年第5期4419-4444,共26页
Aspect-based sentiment analysis(ABSA)is a fine-grained process.Its fundamental subtasks are aspect termextraction(ATE)and aspect polarity classification(APC),and these subtasks are dependent and closely related.Howeve... Aspect-based sentiment analysis(ABSA)is a fine-grained process.Its fundamental subtasks are aspect termextraction(ATE)and aspect polarity classification(APC),and these subtasks are dependent and closely related.However,most existing works on Arabic ABSA content separately address them,assume that aspect terms are preidentified,or use a pipeline model.Pipeline solutions design different models for each task,and the output from the ATE model is used as the input to the APC model,which may result in error propagation among different steps because APC is affected by ATE error.These methods are impractical for real-world scenarios where the ATE task is the base task for APC,and its result impacts the accuracy of APC.Thus,in this study,we focused on a multi-task learning model for Arabic ATE and APC in which the model is jointly trained on two subtasks simultaneously in a singlemodel.This paper integrates themulti-task model,namely Local Cotext Foucse-Aspect Term Extraction and Polarity classification(LCF-ATEPC)and Arabic Bidirectional Encoder Representation from Transformers(AraBERT)as a shred layer for Arabic contextual text representation.The LCF-ATEPC model is based on a multi-head selfattention and local context focus mechanism(LCF)to capture the interactive information between an aspect and its context.Moreover,data augmentation techniques are proposed based on state-of-the-art augmentation techniques(word embedding substitution with constraints and contextual embedding(AraBERT))to increase the diversity of the training dataset.This paper examined the effect of data augmentation on the multi-task model for Arabic ABSA.Extensive experiments were conducted on the original and combined datasets(merging the original and augmented datasets).Experimental results demonstrate that the proposed Multi-task model outperformed existing APC techniques.Superior results were obtained by AraBERT and LCF-ATEPC with fusion layer(AR-LCF-ATEPC-Fusion)and the proposed data augmentation word embedding-based method(FastText)on the combined dataset. 展开更多
关键词 arabic aspect extraction arabic sentiment classification arabERT multi-task learning data augmentation
下载PDF
Battle Royale Optimization with Fuzzy Deep Learning for Arabic Sentiment Classification
17
作者 Manar Ahmed Hamza Hala J.Alshahrani +3 位作者 Jaber S.Alzahrani Heba Mohsen Mohamed I.Eldesouki Mohammed Rizwanullah 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2619-2635,共17页
Aspect-Based Sentiment Analysis(ABSA)on Arabic corpus has become an active research topic in recent days.ABSA refers to a fine-grained Sentiment Analysis(SA)task that focuses on the extraction of the conferred aspects... Aspect-Based Sentiment Analysis(ABSA)on Arabic corpus has become an active research topic in recent days.ABSA refers to a fine-grained Sentiment Analysis(SA)task that focuses on the extraction of the conferred aspects and the identification of respective sentiment polarity from the provided text.Most of the prevailing Arabic ABSA techniques heavily depend upon dreary feature-engineering and pre-processing tasks and utilize external sources such as lexicons.In literature,concerning the Arabic language text analysis,the authors made use of regular Machine Learning(ML)techniques that rely on a group of rare sources and tools.These sources were used for processing and analyzing the Arabic language content like lexicons.However,an important challenge in this domain is the unavailability of sufficient and reliable resources.In this background,the current study introduces a new Battle Royale Optimization with Fuzzy Deep Learning for Arabic Aspect Based Sentiment Classification(BROFDL-AASC)technique.The aim of the presented BROFDL-AASC model is to detect and classify the sentiments in the Arabic language.In the presented BROFDL-AASC model,data pre-processing is performed at first to convert the input data into a useful format.Besides,the BROFDL-AASC model includes Discriminative Fuzzy-based Restricted Boltzmann Machine(DFRBM)model for the identification and categorization of sentiments.Furthermore,the BRO algorithm is exploited for optimal fine-tuning of the hyperparameters related to the FBRBM model.This scenario establishes the novelty of current study.The performance of the proposed BROFDL-AASC model was validated and the outcomes demonstrate the supremacy of BROFDL-AASC model over other existing models. 展开更多
关键词 arabic corpus aspect based sentiment analysis arabic language deep learning battle royale optimization natural language processing
下载PDF
Multi-Versus Optimization with Deep Reinforcement Learning Enabled Affect Analysis on Arabic Corpus
18
作者 Mesfer Al Duhayyim Badriyya B.Al-onazi +7 位作者 Jaber S.Alzahrani Hussain Alshahrani Mohamed Ahmed Elfaki Abdullah Mohamed Ishfaq Yaseen Gouse Pasha Mohammed Mohammed Rizwanullah Abu Sarwar Zamani 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期3049-3065,共17页
Sentiment analysis(SA)of the Arabic language becomes important despite scarce annotated corpora and confined sources.Arabic affect Analysis has become an active research zone nowadays.But still,the Arabic language lag... Sentiment analysis(SA)of the Arabic language becomes important despite scarce annotated corpora and confined sources.Arabic affect Analysis has become an active research zone nowadays.But still,the Arabic language lags behind adequate language sources for enabling the SA tasks.Thus,Arabic still faces challenges in natural language processing(NLP)tasks because of its structure complexities,history,and distinct cultures.It has gained lesser effort than the other languages.This paper developed a Multi-versus Optimization with Deep Reinforcement Learning Enabled Affect Analysis(MVODRL-AA)on Arabic Corpus.The presented MVODRL-AAmodelmajorly concentrates on identifying and classifying effects or emotions that occurred in the Arabic corpus.Firstly,the MVODRL-AA model follows data pre-processing and word embedding.Next,an n-gram model is utilized to generate word embeddings.A deep Q-learning network(DQLN)model is then exploited to identify and classify the effect on the Arabic corpus.At last,the MVO algorithm is used as a hyperparameter tuning approach to adjust the hyperparameters related to the DQLN model,showing the novelty of the work.A series of simulations were carried out to exhibit the promising performance of the MVODRL-AA model.The simulation outcomes illustrate the betterment of the MVODRL-AA method over the other approaches with an accuracy of 99.27%. 展开更多
关键词 arabic language arabic corpus natural language processing affect analysis deep learning
下载PDF
Hunter Prey Optimization with Hybrid Deep Learning for Fake News Detection on Arabic Corpus 被引量:2
19
作者 Hala J.Alshahrani Abdulkhaleq Q.A.Hassan +5 位作者 Khaled Tarmissi Amal S.Mehanna Abdelwahed Motwakel Ishfaq Yaseen Amgad Atta Abdelmageed Mohamed I.Eldesouki 《Computers, Materials & Continua》 SCIE EI 2023年第5期4255-4272,共18页
Nowadays,the usage of socialmedia platforms is rapidly increasing,and rumours or false information are also rising,especially among Arab nations.This false information is harmful to society and individuals.Blocking an... Nowadays,the usage of socialmedia platforms is rapidly increasing,and rumours or false information are also rising,especially among Arab nations.This false information is harmful to society and individuals.Blocking and detecting the spread of fake news in Arabic becomes critical.Several artificial intelligence(AI)methods,including contemporary transformer techniques,BERT,were used to detect fake news.Thus,fake news in Arabic is identified by utilizing AI approaches.This article develops a new hunterprey optimization with hybrid deep learning-based fake news detection(HPOHDL-FND)model on the Arabic corpus.The HPOHDL-FND technique undergoes extensive data pre-processing steps to transform the input data into a useful format.Besides,the HPOHDL-FND technique utilizes long-term memory with a recurrent neural network(LSTM-RNN)model for fake news detection and classification.Finally,hunter prey optimization(HPO)algorithm is exploited for optimal modification of the hyperparameters related to the LSTM-RNN model.The performance validation of the HPOHDL-FND technique is tested using two Arabic datasets.The outcomes exemplified better performance over the other existing techniques with maximum accuracy of 96.57%and 93.53%on Covid19Fakes and satirical datasets,respectively. 展开更多
关键词 arabic corpus fake news detection deep learning hunter prey optimizer classification model
下载PDF
血清HSP47、β1ARAb、sST2与老年原发性高血压伴心肌肥厚的相关性研究
20
作者 王璐珍 李晶 +1 位作者 王静 马旭明 《心血管病防治知识(学术版)》 2023年第33期19-22,共4页
目的 分析血清HSP47、β1ARAb、sST2与老年原发性高血压伴心肌肥厚的相关性。方法 选择该院心内科2020年1月至2022年12月收治的老年原发性高血压伴心肌肥厚患者50例为甲组,老年原发性高血压50例为乙组,并选择同一时期入院体检的健康人... 目的 分析血清HSP47、β1ARAb、sST2与老年原发性高血压伴心肌肥厚的相关性。方法 选择该院心内科2020年1月至2022年12月收治的老年原发性高血压伴心肌肥厚患者50例为甲组,老年原发性高血压50例为乙组,并选择同一时期入院体检的健康人群50例为丙组,比较三组血清HSP47、β1ARAb、sST2与老年原发性高血压伴心肌肥厚的相关性。结果 甲组、乙组的尿素、LDL-C、收缩压、舒张压显著高于丙组,HDL-C低于丙组;乙组的尿素、空腹血糖显著高于甲组,HDL-C低于甲组(P<0.05);三组患者的肌酐、TC、TG比较差异不具有统计学意义;甲组、乙组除LVPWTD升高之外,LVEDD、IVSTD、LVEF、LAD均显著降低(P<0.05);三组患者的FS、LVESD比较差异不具有统计学意义(P>0.05);与丙组相比,甲组、乙组的血清HSP47、β1ARAb水平显著增高,s ST2水平显著降低(P<0.05);血清HSP47、β1ARAb、sST2水平与LVEDD、LVPWTD、IVSTD、LVEF之间相关性比较差异为负相关(P<0.01),与LAD呈正相关(P<0.01);血清HSP47、β1ARAb、sST2水平的曲线下面积分别为0.83 (95%CI:0.760-0.912)、0.892(95%CI:0.831-0.955)、0.735(95%CI:0.641-0.828),差异有统计学意(P<0.05)。结论 血清HSP47、β1ARAb、sST2在老年原发性高血压患者的心肌肥厚中具备一定的相关性,该项指标可作为老年原发性高血压患者诊断的相关标准,为患者的临床诊治提供一定的指导,值得推广应用。 展开更多
关键词 血清HSP47 β1arab sST2 老年原发性高血压伴心肌肥厚 相关性
下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部