期刊文献+
共找到364篇文章
< 1 2 19 >
每页显示 20 50 100
Mechanisms for non-ideal flow in low-power arc-heated supersonic nozzles 被引量:1
1
作者 Cheng-Kang Wu Wen-Xia Pan +1 位作者 Xian Meng Hai-Xing Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第4期500-511,共12页
The flow in a low-powered arc gas heater com- bined with a supersonic nozzle of throat diameter less than 1 mm is quite complicated and difficult to describe in quan- titative detail. Experiments on arc-heated superso... The flow in a low-powered arc gas heater com- bined with a supersonic nozzle of throat diameter less than 1 mm is quite complicated and difficult to describe in quan- titative detail. Experiments on arc-heated supersonic jet thrusters of monatomic gases argon and helium have been carried out and their performance measured. The flow charac- teristics are analyzed with the help of numerical simulation. Results show that the viscous effect is the most important factor causing the large difference between ideal and real performance. A large outer section of the exit flow is slow- moving. This is especially pronounced in helium, where 70 % of the exit area of the nozzle might be in subsonic flow. Fric- tion forces can be much larger than the net thrust, reaching several times higher in helium, resulting in very low efficien- cies. Other factors causing the differences between ideal and real flow include: complex flow in the throat region, electric arc extending to the nozzle expansion section, heat transfer to the inlet gas and from the hot plasma, and environmen- tal pressure in the vacuum chamber. It is recognized that the ordinary concepts of supersonic nozzle flow must be greatly modified when dealing with such complicated situations. The general concepts presented in this paper could be helpful in guiding the design and operation of this equipment. 展开更多
关键词 arc-heated supersonic jet LOW-POWER Real flow Viscosity effect Low Reynolds number
下载PDF
Study on Collision Process of Opposing Unsteady Supersonic Jets and Shock Waves
2
作者 Sakira Uno Hiroshi Fukuoka +1 位作者 Atsushi Suda Ikurou Umezu 《Open Journal of Fluid Dynamics》 CAS 2023年第2期104-112,共9页
Double pulsed-laser-ablation is a promising method to prepare nanoparticle composites. The backward movement of the plume after the collision with counter-propagating shock wave has been observed in experiments. In th... Double pulsed-laser-ablation is a promising method to prepare nanoparticle composites. The backward movement of the plume after the collision with counter-propagating shock wave has been observed in experiments. In the present study, collision dynamics of the oppositely injected Si and Ge jets into a He background gas was numerically calculated as a simulation for double pulsed-laser-ablation. The experimentally observed backward movement was reproduced. The effect of distance between two jet exits on the distance of backward movement of the jet, B<sub>L</sub>, after the collision with the counter-propagating shock front was calculated to discuss the collision dynamics and to optimize the target distance for the experiment. We found that B<sub>L </sub>does not decrease monotonically with increasing distance between two jet exits, but has a maximum value at a certain distance. This behavior is discussed by calculating the expansion dynamics of an individual jet. Shock wave grows with time at the initial stage of the jet expansion and then attenuates;the density just behind the shock front for individual jet has a maximum value at a certain time and position. B<sub>L</sub> has a maximum value when the densities just behind the shock fronts for the individual jets have maximum values. This result is important for designing the appropriate distance between the two jet exits, i.e., the distance between the targets of double pulsed-laser-ablation. 展开更多
关键词 Collision of supersonic jets Shock Wave Computational Fluid Dynamics Laser Ablation
下载PDF
Numerical Simulation of Direct-contact Condensation from a Supersonic Steam Jet in Subcooled Water 被引量:16
3
作者 Ajmal Shah Imran Rafiq Chughtai Mansoor Hameed Inayat 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第4期577-587,共11页
The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a ther... The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a thermal equilibrium model for direct-contact condensation of steam in subcooled water.The condensation model presented was a two resistance model which takes care of the heat transfer process on both sides of the interface and uses a variable steam bubble diameter.The injection of supersonic steam jet in subcooled water tank was simulated using the Euler-Euler multiphase flow model of Fluent 6.3 code with the condensation model incorporated. The findings of the computational fluid dynamics(CFD) simulations were compared with the published experimental data and fairly good agreement was observed between the two,thus validating the condensation model.The results of CFD simulations for dimensionless penetration length of steam plume varies from 2.73-7.33,while the condensation heat transfer coefficient varies from 0.75-0.917 MW·(m ^2 ·K)^ -1 for water temperature in the range of 293-343 K. 展开更多
关键词 computational fluid dynamics condensation model direct-contact condensation heat transfer coefficient supersonic steam jet
下载PDF
Experimental investigations of detonation initiation by hot jets in supersonic premixed flows 被引量:4
4
作者 韩旭 周进 林志勇 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期305-309,共5页
A new method to initiate and sustain the detonation in supersonic flow is investigated. The reaction activity of coming flow may influence the result of detonation initiation. When a hot jet initiates a detonation wav... A new method to initiate and sustain the detonation in supersonic flow is investigated. The reaction activity of coming flow may influence the result of detonation initiation. When a hot jet initiates a detonation wave successfully, there may exist two types of detonations. If the detonation velocity is greater than the velocity of coming flow, there will be a normal detonation here. Because of the influence of boundary layer separation, the upstream detonation velocity is much greater than the Chapman-Jouguet (C J) detonation velocity. On the other hand, if the detonation velocity is less than the velocity of coming flow, an oblique detonation wave (ODW) will form. The ODW needs a continuous hot jet to sustain itself. If the jet pressure is lower than a certain value, the ODW will decouple. In contrast, the normal detonation wave can sustain itself without the hot jet. 展开更多
关键词 hot jet DETONATION supersonic flow
原文传递
Effects of the jet-to-crossflow momentum ratio on a sonic jet into a supersonic crossflow 被引量:2
5
作者 Guo-Lei Wang~(a)) and Xi-Yun Lu~(b)) Department of Modern Mechanics,University of Science and Technology of China,Hefei,Anhui 230026,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第1期53-57,共5页
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based ... Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based on the jet diameter.Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena,including flow structures, turbulent characters and frequency behaviors,have been studied.The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures,vortical structures and jet shear layers.The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio.Turbulent characters are clarified to be closely related to the flow structures.The jet penetration increases with the increase of the momentum ratio.Moreover,the dominant frequencies of the flow structures are obtained using spectral analysis.The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow 展开更多
关键词 large-eddy simulation compressible turbulent flow jet into supersonic CROSSFLOW
下载PDF
Emission of High Energy during Super-Compressibility of Supersonic Jets 被引量:2
6
作者 Kholmurad Khasanov 《Open Journal of Fluid Dynamics》 2012年第4期172-179,共8页
New source of light emission of high energy is found due to arising of instability in supersonic jets. These phenomena are observed in gas jets flowing from the nozzle with a central cone. It leads to high acceleratio... New source of light emission of high energy is found due to arising of instability in supersonic jets. These phenomena are observed in gas jets flowing from the nozzle with a central cone. It leads to high accelerations of the molecules, ions and elementary particles. The emission spectra of the jets are obtained. Decoding of the spectra allowed us to define inverted population of rotational and vibrational levels, electrons temperature, rotational and vibrational temperatures for molecular ions. Internal energy decreasing provides the instability and gas volume decreasing due to internal forces;super-compressibility is result of it;its produce high density of light energy emission in various continuous media. 展开更多
关键词 Internal ENERGY DECREASING Light of High Density of Electromagnetic ENERGY EMISSION Super-Compressibility supersonic jets
下载PDF
Supersonic boundary layer transition induced by self-sustaining dual jets 被引量:1
7
作者 Qiang Liu Zhenbing Luo +3 位作者 Xiong Deng Zhiyong Liu Lin Wang Yan Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期95-98,共4页
To promote high-speed boundary layer transition,this paper proposes an active self-sustaining dual jets(SDJ)actuator utilizing the energy of supersonic mainflow.Employing the nanoparticle-based planar laser scattering... To promote high-speed boundary layer transition,this paper proposes an active self-sustaining dual jets(SDJ)actuator utilizing the energy of supersonic mainflow.Employing the nanoparticle-based planar laser scattering(NPLS),supersonic flat-plate boundary layer transition induced by SDJ is experimentally investigated in an Ma-2.95 low-turbulence wind tunnel.Streamwise and spanwise NPLS images are obtained to analyze fine flow structures of the whole transition process.The results reveal the transition control mechanisms that on the one hand,the jet-induced shear layer produces unstable Kelvin–Helmholtz instabilities in the wake flow,on the other hand,the jets also generates an adverse pressure gradient in the boundary layer and induce unstable streak structures,which gradually break down into turbulence downstream.The paper provides a new method for transition control of high-speed boundary layer,and have prospect both in theory and engineering application. 展开更多
关键词 supersonic boundary layer transition self-sustaining dual jets nanoparticle-based planar laser scattering(NPLS) vortex structures
原文传递
Combustion characteristics of supersonic strut-cavity combustor under plasma jet-assisted combustion 被引量:1
8
作者 ZHANG Zhe JIN Xing XI Wen-xiong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期311-324,共14页
Plasma jet has been widely used in supersonic combustor as an effective ignition and combustion assisted method,but currently it is mostly combined with the traditional wall fuel injection method,while the application... Plasma jet has been widely used in supersonic combustor as an effective ignition and combustion assisted method,but currently it is mostly combined with the traditional wall fuel injection method,while the application combined with the central fuel injection method is less.In order to expand the combustion range,the plasma jet was introduced into a strut-cavity combustor with an alternating-wedge.The effects of total pressure of strut fuel injection,total pressure of cavity fuel injection,total pressure of plasma jet injection and plasma jet media on the combustion characteristics were analyzed in supersonic flow by numerical calculations in a three-dimensional domain.The combustion field structure,wall pressure distribution,combustion efficiency and distribution of H2O at the exit of the combustor with different injection conditions were analyzed.The results show that the combustion efficiency decreases with the increase of the strut fuel injection total pressure.However,the combustion area downstream increases when the total pressure of the strut fuel injection increases within the proper range.The combustion range is expanded and the combustion efficiency is improved when the cavity fuel injection total pressure is increased within the range of 0.5−2.0 MPa,but a sharp drop in combustion efficiency can be found due to limited fuel mixing when the total injection pressure of the cavity fuel is excessively increased.With the increased total injection pressure of the plasma jet,the height of the cavity shear layer is raised and the equivalence ratio of the gas mixture in the cavity is improved.When the total pressure of the plasma jet is 1.25 MPa,the combustion efficiency reaches a maximum of 82.1%.The combustion-assisted effect of different plasma jet media is significantly different.When the medium of the plasma jet is O2,the combustion-assisted effect on the combustor is most significant. 展开更多
关键词 plasma jet STRUT CAVITY supersonic combustion numerical simulation combustion efficiency
下载PDF
Numerical analysis of supersonic jet flow and dust transport induced by air ingress in a fusion reactor 被引量:1
9
作者 Bu-Er Wang Shi-Chao Zhang +2 位作者 Zhen Wang Jiang-Tao Jia Zhi-Bin Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第7期72-82,共11页
During a loss of vacuum accident(LOVA),the air ingress into a vacuum vessel(VV)may lead to radioactive dust resuspension,migration,and even explosion,thereby posing a great threat to the safe operation of future fusio... During a loss of vacuum accident(LOVA),the air ingress into a vacuum vessel(VV)may lead to radioactive dust resuspension,migration,and even explosion,thereby posing a great threat to the safe operation of future fusion reactors;thus,it is crucial to understand the flow characteristics and radioactive dust transport behavior induced by LOVA.However,only a few studies have identified the characteristics of the highly under-expanded jet flow at a scale of milliseconds during LOVA.Particularly,the occurrence and behavior of a Mach disk is yet to be captured in existing studies.In this study,we used a more advanced model with a finer mesh and adaptive mesh strategies to capture the Mach disk in a VV during LOVA.In detail,a computational fluid dynamics–discrete phase model one-way coupled multiphase approach was established using the computational fluid dynamics code ANSYS FLUENT and applied to the analysis during the first seconds of LOVA.The results showed that air ingress into the VV behaved like a highly free under-expanded jet at the initial stage and Mach disk was formed at~6 ms.Moreover,the flow field dramatically changed at the position of the Mach disk.The jet core before the Mach disk had a maximum velocity of~8 Mach with the corresponding lowest static pressure(~100 Pa)and temperature(few tens of K).The friction velocities in the lower part of the VV,which is an area of concern due to dust deposition,were generally larger than 15 m/s near the inlet region.Lastly,the crude prediction of the particle trajectories demonstrated the spiral trajectories of the dust following the air motion.Therefore,this study provided a basis for further safety analysis and accident prevention related to dust transport and explosion in future fusion reactors. 展开更多
关键词 supersonic jet Radioactive dust Loss of vacuum accident Mach disk Friction velocity
下载PDF
Spray Atomization and Structure of Supersonic Liquid Jet with Various Viscosities of Non-Newtonian Fluids 被引量:1
10
作者 Jeung Hwan Shin Inchul Lee +1 位作者 Heuydong Kim Jaye Koo 《Open Journal of Fluid Dynamics》 2012年第4期297-304,共8页
These experimental investigations are designed to study shock wave characteristics and spray structure. Supersonic liq- uid jets injected into ambient fields are empirically studied using projectile impacts in a two-s... These experimental investigations are designed to study shock wave characteristics and spray structure. Supersonic liq- uid jets injected into ambient fields are empirically studied using projectile impacts in a two-stage light gas gun. This study looks primarily at the design of the nozzle assembly, the tip velocity of the high speed jet, the structure of the spray jet and the shock wave generation process. The supersonic liquid jets were visualized using an ultra high-speed camera and the schlieren system for visualization to quantitatively analyze the shock wave angle. The experimental re- sults with straight cone nozzle types and various non-Newtonian fluid viscosities are presented in this paper. The effects of nozzle geometry on the jet behavior are described. The characteristics of the shock wave generation and spray jet structure were found to be significantly related to the nozzle geometry. The expansion gases accelerated the projectile, which had a mass of 6 grams, from 250 m/s. As a result, it was found that the maximum jet velocity appeared in the liquid jet with high viscosity properties. Supersonic liquid jets, which occurred at the leading edge the shock waves and the compression waves in front of the jets, were observed. Also, the shock waves significantly affected the atomization process for each spray droplet. 展开更多
关键词 Two-Stage Light Gas GUN PROJECTILE Impact Non-Newtonian Fluid supersonic Liquid jet Shock Wave SMD
下载PDF
Characteristics of a coherent jet enshrouded in a supersonic fuel gas
11
作者 Fei Zhao Rong Zhu Wen-rui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第2期173-180,共8页
Based on a current coherent jet,this study proposes a supersonic combustion(SC)coherent jet in which the main oxygen jet is surrounded by a supersonic fuel gas.The characteristics of the proposed coherent jet are anal... Based on a current coherent jet,this study proposes a supersonic combustion(SC)coherent jet in which the main oxygen jet is surrounded by a supersonic fuel gas.The characteristics of the proposed coherent jet are analyzed using experimental methods and numerical simulations in the high-temperature environment of electric arc furnace(EAF)steelmaking.The SC coherent jet achieved stable combustion in the EAF steelmaking environment.The simulated combustion temperature of the supersonic shrouding methane gas was 2930 K,slightly below the theoretical combustion temperature of methane–oxygen gas.The high speed and temperature of the supersonic flame effectively weakened the interaction between the main oxygen jet and the external ambient gas,inhibiting the radial expansion of the main oxygen jet and maintaining its high speed and low turbulence over a long distance.These features improved the impact capacity of the coherent jet and strengthened the stirring intensity in the EAF bath. 展开更多
关键词 EAF steelmaking coherent jet supersonic shrouding fuel gas supersonic combustion field characteristics
下载PDF
Spectrum Blueshifting of Ultrashort UV Laser Pulse Induced by Ionization of Supersonic He and Ar Gas Jets
12
作者 颜立新 张永生 +3 位作者 刘晶儒 黄文会 唐传祥 程建平 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第3期302-306,共5页
The predominant spectral blueshifting of a sub-picosecond UV laser pulse induced by ultrafast ionization of noble gases was investigated. Spectral measurements were made at various gas densities. Typical quasi-periodi... The predominant spectral blueshifting of a sub-picosecond UV laser pulse induced by ultrafast ionization of noble gases was investigated. Spectral measurements were made at various gas densities. Typical quasi-periodic structures in the blueshifted spectrum were obtained. The observations were in connection with the so-called self-phase modulation of laser pulses in the ultrafast ionization process which was simply simulated with an ADK (Ammosov-Delone-Krainov) ionization model. Some quantitative information can be deduced from the measurements and calculations. 展开更多
关键词 gas jets spectral blueshifting ultrashort UV laser ADK ionization model supersonic
下载PDF
Time Characterization of High Density Gas Jet from a Pulsed Supersonic Nozzle via Laser Produced Plasma
13
作者 颜立新 张永生 +3 位作者 马莲英 刘晶儒 程建平 吕敏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第4期429-432,共4页
A high-density gas jet supersonic nozzle is reported in this paper. The jitter and actuation time of the nozzle is determined by the pin discharge and laser spark radiation respectively. The jitter time of the nozzle ... A high-density gas jet supersonic nozzle is reported in this paper. The jitter and actuation time of the nozzle is determined by the pin discharge and laser spark radiation respectively. The jitter time of the nozzle is within 10μs with the backing pressure as high as 25 bar. With a nanosecond laser pulse focused on the gas jet about 1 mm below the nozzle, the actuation time is calculated to be about 15 ms by detecting the laser produced spark radiation, which reveals the existence of the gas jet and the relative gas density evolving with time. Consequently the gas density is estimated to be well above 10^19 cm^-3, compared with theoretical simulations from the nozzle parameters. 展开更多
关键词 supersonic nozzle high-density gas jet laser produced plasma
下载PDF
Numerical Simulation of Interaction between Supersonic Flow and Backward Inclined Jets Surrounded by Porous Cavity
14
作者 Nao Kuniyoshi Minoru Yaga 《Open Journal of Fluid Dynamics》 2017年第3期276-287,共12页
As one of supersonic mixing techniques, a supersonic mixing technique using a cavity and a porous wall has been proposed. The cavity and the porous wall generate the low speed region in the cavity, which enhances mixi... As one of supersonic mixing techniques, a supersonic mixing technique using a cavity and a porous wall has been proposed. The cavity and the porous wall generate the low speed region in the cavity, which enhances mixing the main flow with the jets. In this study, numerical simulations were conducted to clarify the effects of backward inclined jets on the mixing technique using a porous wall and a cavity. In the numerical simulations, three patterns of jet injections which combined normal jets with backward inclined jets were studied. As a result, the combination of a backward inclined jet and a normal jet generates the suction flow behind the backward inclined jet, which is useful for making the injected jets flow into the cavity. In addition, the introduction of backward inclined jets reduces the total pressure loss. On the other hand, the mass flow rate through the porous holes decreases with increase in the number of the backward inclined jets. 展开更多
关键词 supersonic MIXING CAVITY POROUS Wall BACKWARD Inclined jet
下载PDF
Flow Characteristics of Two-Dimensional Supersonic Under-Expanded Coanda-Reattached Jet
15
作者 Tetsuji Ohmura Toshihiko Shakouchi +1 位作者 Shunsuke Fukushima Koichi Tsujimoto 《Journal of Flow Control, Measurement & Visualization》 2021年第1期1-14,共14页
<span><span style="font-family:;" "=""><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">When there is a wall near ... <span><span style="font-family:;" "=""><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">When there is a wall near the jet, it deflects and flows while being attached to the wall owing to the Coanda effect. The flow characteristics of the incompressible and two-imensional (2D) Coanda-reattached jets have been considerably explained. However, 2D supersonic under-expanded jets, reattached to side walls, have not been sufficiently investigated. These jets are used in gas-atomization to produce fine metal powder particles of several micrometers to several tens micrometers. In this case, the supersonic under-expanded jets are issued from an annular nozzle, which is set around a vertically in</span><span style="font-family:Verdana;">stalled circular nozzle for molten metal. The jet flow at the center</span><span style="font-family:Verdana;"> cross</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">section of the annular jet resembles a 2D Coanda-reattached jet that deflects and attaches on the central axis. In this study, the flow characteristics of a supersonic under-expanded Coanda air jet from a 2D nozzle that reattaches to an offset side wall are elucidated through experiment and numerical analysis. For numerical analysis, we show how much it can express experimental results. The effects of supply pressure </span><i><span style="font-family:Verdana;">P</span><span style="font-family:Verdana;"><sub></sub></span><span style="font-family:Verdana;"></span></i><sub><span style="font-family:Verdana;">0</span><span style="font-family:Verdana;"></span></sub></span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"> on the flow characteristics such as the flow pattern, size of shock cell, reattachment distance, and velocity and pressure distributions, etc. are examined. The flow pattern was visualized by Schlieren method and the velocity distribution was measured using a Pitot tube. These results will be also useful in understanding the flow characteristics of a gas-atomization annular nozzle approximately.</span></span></span> 展开更多
关键词 supersonic Flow Under-Expanded jet Coanda Reattached jet Flow Visualization Gas-Atomization Experimental Analysis Numerical Analysis
下载PDF
Optimization of Parametric Periodograms for the Study of Density Fluctuations in a Supersonic Jet
16
作者 Catalina Elizabeth Stern Forgach José Manuel Alvarado Reyes 《Journal of Signal and Information Processing》 2013年第4期439-444,共6页
In our research on the density fluctuations of a supersonic jet we were confronted with a quite difficult problem. In the power spectrum obtained either with a spectrum analyzer, the peaks of the two of the modes that... In our research on the density fluctuations of a supersonic jet we were confronted with a quite difficult problem. In the power spectrum obtained either with a spectrum analyzer, the peaks of the two of the modes that we wanted to identify overlapped. We needed to find a signal processing method that would resolve the two main frequencies. We made a thorough investigation of several methods and thought that parametric periodograms were the appropriate tool. The use of parametric periodograms in signal processing requires constant training. The proper application of this tool depends on the determination of the number of parameters that has to be used to best model a real signal. The methods generally used to determine this number are subjective, depending on trial and error and on the experience of the user. Some of these methods rely on the minimization of the estimated variance of the linear prediction error , as a function of the number of parameters n. In many cases, the graph vs n doesn’t have a minimum, and the methods cannot be used. In this paper, we show that there is a strong relationship between and the frequency resolution . That is, as we modify , we obtain graphs of vs n that present at least one minimum. The spectrum obtained with this optimal number of parameters, always reproduces the frequency information of the original signal. In this paper, we present basically the signal processing of the data obtained in a Rayleigh scattering experiment on a supersonic jet that has also been designed by the authors. 展开更多
关键词 PARAMETRIC Periodograms DENSITY FLUCTUATIONS supersonic jet
下载PDF
镁合金表面热喷涂WC-10Co-4Cr粒子沉积及分布特性 被引量:1
17
作者 方敏 蒋理帅祎 +1 位作者 刘富强 张治民 《科学技术与工程》 北大核心 2024年第8期3186-3192,共7页
为了探究高速空气燃料热喷涂(activated combustion-high velocity air fuel,AC-HVAF)过程中喷涂粒子撞击基材后的沉积特性。采用AC-HVAF热喷涂技术在AZ80镁合金基体上沉积WC-10Co-4Cr硬质涂层。通过离散沉积实验获得薄层沉积粒子,探讨... 为了探究高速空气燃料热喷涂(activated combustion-high velocity air fuel,AC-HVAF)过程中喷涂粒子撞击基材后的沉积特性。采用AC-HVAF热喷涂技术在AZ80镁合金基体上沉积WC-10Co-4Cr硬质涂层。通过离散沉积实验获得薄层沉积粒子,探讨各种沉积形貌的种类、形成原因、结合机制及射流中粒子的径向和轴向分布。结果表明:在AC-HVAF粒子沉积过程中,嵌入型沉积为主要的沉积形貌,同时包含少量的破碎型与空腔型沉积粒子。在涂层的形成过程中,嵌入型沉积对涂层/基体结合性能起重要作用;空腔型沉积的小颗粒及破碎型沉积的大颗粒是造成沉积效率下降的主要原因。喷涂粒子主要集中在射流中心,越靠近射流边缘,空腔型沉积粒子越多,最终导致AC-HVAF粒子射流呈现出空间分布特征。 展开更多
关键词 超音速火焰喷涂 WC-10Co-4Cr 沉积状态 粒子射流 镁合金
下载PDF
超声速喷流激波噪声基础问题数值模拟研究进展
18
作者 张树海 武从海 +2 位作者 罗勇 韩帅斌 张俊龙 《实验流体力学》 CAS CSCD 北大核心 2024年第1期1-27,共27页
超声速喷流问题是一个包含激波、旋涡、湍流和声波的多尺度复杂流动问题,其数值模拟方法及激波噪声产生机制是相关研究的长期热点和难点。本文简要回顾了超声速喷流激波噪声研究进展,重点介绍了针对激波噪声计算方法的非物理噪声消除技... 超声速喷流问题是一个包含激波、旋涡、湍流和声波的多尺度复杂流动问题,其数值模拟方法及激波噪声产生机制是相关研究的长期热点和难点。本文简要回顾了超声速喷流激波噪声研究进展,重点介绍了针对激波噪声计算方法的非物理噪声消除技术和光滑因子设计准则,针对超声速喷流激波噪声研究设计的模型问题(包括旋涡–旋涡相互作用、激波–旋涡相互作用和激波–剪切层相互作用等),以及轴对称和三维超声速喷流的研究进展。本文还介绍了作者最近针对超声速喷流开展的三维直接数值模拟、实验验证工作和初步分析结果(包括轴对称模态定位、束缚波演化和摆动模态发展等)。 展开更多
关键词 超声速喷流 激波 旋涡 湍流 噪声 数值模拟
下载PDF
HEPJet等离子喷涂Al_2O_3性能试验研究 被引量:20
19
作者 翟长生 巫瑞智 +2 位作者 王海军 周世魁 孙宝德 《材料工程》 EI CAS CSCD 北大核心 2004年第12期47-50,55,共5页
研究了新开发的高效能超音速等离子喷涂系统(HEPJet-HighEfficiencyPlasmaJet)的射流特性,及所制备的Al2O3陶瓷涂层的结合强度、显微硬度和孔隙率等性能以及显微结构,并与一种普通等离子喷涂系统进行了对比试验研究。结果表明,HEPJet系... 研究了新开发的高效能超音速等离子喷涂系统(HEPJet-HighEfficiencyPlasmaJet)的射流特性,及所制备的Al2O3陶瓷涂层的结合强度、显微硬度和孔隙率等性能以及显微结构,并与一种普通等离子喷涂系统进行了对比试验研究。结果表明,HEPJet系统制备Al2O3涂层的性能及显微结构明显优于普通等离子喷涂的Al2O3涂层。 展开更多
关键词 超音速等离子喷涂 射流特性 涂层性能 微观结构
下载PDF
冲压发动机燃烧室超声速来流横向喷雾轨迹预测模型及动态特性分析研究
20
作者 王梓成 胡斌 +4 位作者 王中豪 王藤 石强 雒伟伟 赵庆军 《推进技术》 EI CAS CSCD 北大核心 2024年第5期132-144,共13页
为探究超声速来流下圆柱横向射流轨迹及喷雾动态特性,在宽来流马赫数(Ma=1.50,2.02,3.09)条件下开展了不同喷嘴直径与喷注压力的煤油喷雾试验,通过纹影系统捕捉射流图像并进行外边界拟合与频谱分析。建立了考虑射流前激波效应的穿透深... 为探究超声速来流下圆柱横向射流轨迹及喷雾动态特性,在宽来流马赫数(Ma=1.50,2.02,3.09)条件下开展了不同喷嘴直径与喷注压力的煤油喷雾试验,通过纹影系统捕捉射流图像并进行外边界拟合与频谱分析。建立了考虑射流前激波效应的穿透深度预测模型,最大与平均相对误差较先前的预测模型分别下降约36%和19.1%。通过快速傅里叶变换分析,发现喷雾所受扰动以低频波为主,同时伴有时间特征较为复杂的波动。本征正交分解分析结果证明,喷雾表面同时存在高低频扰动,但低频波占据主导地位,高频波能量较低可被忽略,对应了快速傅里叶变换分析结果;低频波频率与来流有效韦伯数有关,有效韦伯数增大会使波长减小,当喷雾前端的来流速度差别较小时,频率就会增大。 展开更多
关键词 冲压发动机 燃烧室 燃料喷注 超声速来流 射流轨迹预测 喷雾动态特性 本征正交分解
原文传递
上一页 1 2 19 下一页 到第
使用帮助 返回顶部