Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol o...Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol optical depths (AOD) at 3 km × 3 km north of 59.9</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">N over ocean were assessed at 550 nm by aerosol robotic network (AERONET) data from coastal sites and marine aerosol network (MAN) data from vessels during June to October 2006 to 2018. Typically, MODIS AOD w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> higher at low and lower at high values than the AERONET AOD. Discrepancies were largest for sites where the Earth’s surface around the site is very heterogeneous (Canadian Archipelago, coast of Greenland). Due to the higher likelihood for sea-ice, MAN and MODIS AOD differed stronger west of Greenland and over the Beaufort Sea than at location in the Greenland and Norwegian Seas and Atlantic. MODIS AOD well captured the inter-seasonal variability found in the AERONET AOD data (R = 0.933). At all sites, MO</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS and AERONET AOD agreement improved as time progressed in the shipping season, hinting at errors in sea-ice vs. open water classification. Overall 75.3% of the MODIS AOD data fell within the limits of the error envelops of the AERONET/MAN AOD data with MAN ranging between 87.5% and 100%. Changes in both MODIS and AERONET mean AOD between two periods of same length (2006-2011, 2013-2018) were explainable by changes in emissions for all sites</span><span style="font-family:Verdana;">.</span>展开更多
Due to the recent increase in Arctic shipping, 2006-2020 June to October Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1), and Mult...Due to the recent increase in Arctic shipping, 2006-2020 June to October Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1), and Multi-Angle Implementation of Atmospheric Correction (MAIAC) retrieved aerosol optical depth (AOD) data were examined for changes in AOD from period 1 (P1, 2006-2012) to period 2 (P2, 2014-2020 (P2). Herein, AOD was statistically analyzed on a 0.25° × 0.25° grid and in the airsheds over the various ocean basins over the Arctic north of 59.75°N. According to heatmaps of the correlation between AOD and ship traffic, and AOD and fire emissions for the airsheds, all three AOD products captured the observed inter-annual variability in wildfire occurrence well, and showed wildfire emissions over Siberia were more severe in P2 than P1. Except for the Atlantic, North, and Baltic Seas, Beaufort Sea, and Barents Sea, all three AOD products indicated that AOD was higher over the various basins in P2 than P1, but disagreed on the magnitude. This fact suggests that the detection of changes in the typical low AOD over the Arctic Ocean might be rather qualitative than quantitative. While all products captured increases in AOD due to ships at berth, only MODIS C6.1 caught the elevated AOD due to shipping on the Siberian rivers. Obviously, sub-daily resolutions are required to capture increased AOD due to short-term events like a traveling ship or short-interval fire.展开更多
The distributions and correlations of chlorophyll-a(Chl-a),aerosol optical depth(AOD)and ice cover in the southeast Arctic Ocean-Greenland Sea(10°W–10°E,70°–80°N)between 2003 and 2009 were studie...The distributions and correlations of chlorophyll-a(Chl-a),aerosol optical depth(AOD)and ice cover in the southeast Arctic Ocean-Greenland Sea(10°W–10°E,70°–80°N)between 2003 and 2009 were studied using satellite data and statistical analyses.Regression analysis showed correlations between Chl-a and AOD,Chl-a and ice cover,and AOD and ice cover with different time lags.The time lag of Chl-a and AOD indicated their long-term equilibrium relationship.Peaks in AOD and Chl-a and generally occurred in May and July,respectively.Despite the time lag,the correlation between Chl-a and AOD in the study region was as high as 0.7.The peak gap between Chl-a and AOD shifted for about 6 weeks during 2003–2009.In the summer and autumn of 2009,Chl-a and AOD levels were much higher than during the other years,especially in the northern band of the study region(75°–80°N).The driving forces for this localized increase in phytoplankton biomass could be mainly attributed to the very high rate of ice melting in spring and early summer and the high wind speed in autumn,together with the increased deposition of aerosol throughout the year.The unusually high AOD in the spring of 2003 was mainly due to a massive fi re in Russia,which occurred in the fi rst half of the year.Over the 7 years of the study,the sea surface temperature generally decreased.This may have been due to the release of dimethylsulfi de into the air,excreted in large amounts from abundant phytoplankton biomass,and its subsequent reaction,form large amounts of aerosol,and resulting in regional cooling.展开更多
Here we used Empirical Mode Decomposition (EMD) method to study seasonal variability and nonlinear trend of corrected AERONET Aerosol Optical Depth (AOD/Hi) and corrected PM10 mass concentrations (PMmxf(RH)) i...Here we used Empirical Mode Decomposition (EMD) method to study seasonal variability and nonlinear trend of corrected AERONET Aerosol Optical Depth (AOD/Hi) and corrected PM10 mass concentrations (PMmxf(RH)) in Hong Kong during 2005-2011. AODPrli is highly correlated with PMI0xf(RH) in semi-annual and annual time scales (with correlation coefficient 0.67 for semi-annual and 0.79 for annual components, 95% confidence interval). On the semi-annual scale, both AOD/Hi and PM10xf(RH) can capture the two maxima in March and October, respectively, with much stronger amplitude in March proba- bly due to the long-range transport of dust storm. On the annual cycle, the AOD/Hi and PMI0xf(RH), which are negatively correlated with the precipitation and solar radiation, vary coherently with the maxima in February. This annual peak occurs about one month earlier than the first peak of the semi-annual variability in March, but with only half amplitude. During 2005-2011, both AOD/Hi and PM10xf(RH) exhibit the pronounced decreasing trend with the mean rate of 14 gg m-3 per year for PM10xf(RH), which reflects the significant effects of the air pollution control policy in Hong Kong during the past decade. The nonlinear trend analysis indicates that the decreasing of PM10xf(RH) is slower than that of AOD/Hi when the AOD/Hi is less than 0.44 but becomes faster when the AOD/Hi exceeds 0.44. These results illustrate that the AERONET AOD can be used quantitatively to estimate local air-quality variability on the semi-annual, annual, and long-term trend time scales.展开更多
利用2000—2013年MODIS-Terra卫星产品提供的气溶胶光学厚度(aerosol optical depth,AOD)资料及NCEP/NCAR再分析资料集,使用奇异值分解(singular value decomposition,SVD)方法,分析了夏季东亚地区AOD与到达地面太阳辐射(downward solar...利用2000—2013年MODIS-Terra卫星产品提供的气溶胶光学厚度(aerosol optical depth,AOD)资料及NCEP/NCAR再分析资料集,使用奇异值分解(singular value decomposition,SVD)方法,分析了夏季东亚地区AOD与到达地面太阳辐射(downward solar radiation flux,DSRF)相联系的主要模态,并分析了其与夏季风变化的关系。夏季多年平均的AOD分布显示,在东亚地区存在两个AOD大值区(>0.9),分别位于山东、河南、河北交界处附近以及苏中部分地区。而在福建、台湾及其附近洋面上,夏季AOD的值小于0.4。地面太阳辐射总体上呈现出由南往北递增的分布。比较发现,AOD与地面太阳辐射的气候分布较为相似。在保留季节趋势的情况下,运用SVD方法对两者进行分解,结果表明东亚地区AOD与地面太阳辐射表现出较好的正相关关系。由于相对于年际变化而言,季节趋势是更为主要的部分,因而这种同相关系可归因于季风活动的季节性进程。利用SVD1左场时间系数进行相关分析发现:6月(2013年除外),当中国东部气溶胶AOD大而地面太阳辐射亦大时,在中国东南部以及日本岛南部地区,由于气流辐合增强和存在较强的上升运动,降水偏多,而由于副高位置偏南,使得中国中东部偏北地区水汽供应偏弱,降水偏少。由于地面净太阳辐射增强,华北部分地区异常增暖。8月,大陆上空AOD为负(时间系数为负),地面太阳辐射减少,北方降水增多而南方降水减少,华北地区有一小范围的异常降温。上述结果表明北方气溶胶明显偏少时,云量增加,降水将增多,且辐射明显减弱;说明夏季风的季节进程对气溶胶、到达地面的太阳辐射变化等具有重要影响。展开更多
Although the concentration of atmospheric particulate matter in Shanghai has declined in recent years,aerosols remain one of the major pollutants affecting air quality.Herein,spatio-seasonal variation in aerosol optic...Although the concentration of atmospheric particulate matter in Shanghai has declined in recent years,aerosols remain one of the major pollutants affecting air quality.Herein,spatio-seasonal variation in aerosol optical properties and aerosol types were studied overa 10-year period(2006-2015)in Shanghai,China,using satellite data from Moderate Resolution Imaging Spectroradiometer(MODIS)and CloudAerosol Lidar with Orthogonal Polarization(CALIOP).The average aerosol optical depth values for central urban and suburban areas of Shanghai were between 0.9 and 1.0.Clear seasonal variation in aerosol concentrations occurred,causing strongest attenuation in summer and weakest attenuation in autumn.Polluted dust,polluted continental(urban/industrial)and smoke aerosols were the main aerosol types.Desert dust aerosols occurred in the Shanghai area at higher altitudes(greater than 3 km)in spring,related to dusty weather in the north;while in winter,smoke aerosols occurred at high altitudes,related to haze pollution in the north.The aerosols detected in autumn were mainly from local sources,comprising polluted dust,polluted continental,and smoke aerosols.Aerosols in Shanghai clearly reflect both local and regional sources at different times.展开更多
This study finds out seasonal and monthly variations in Aerosol Optical Depth(AOD)over eastern and western routes of China Pakistan Economic Corridor(CPEC)and the relationship between AOD and meteorological parameters...This study finds out seasonal and monthly variations in Aerosol Optical Depth(AOD)over eastern and western routes of China Pakistan Economic Corridor(CPEC)and the relationship between AOD and meteorological parameters(i.e.,temperature,rainfall and wind speed).The Moderate Resolution Imaging Spectroradiometer(MODIS)and Multi-angle Imaging Spectroradiometer(MISR)data was used from the terra satellite for the period of 2000-2016.This study aims to overtake the conventional view of the purpose of using the satellite datasets.This study takes on to the concept that validated satellite data sets rather should be used for the analysis instead of just validation specifically for our study region.Hence,after comparing MODIS AOD with MISR AOD,only MISR AOD dataset is used for further analysis.The results show a decreasing trend of AOD in summer season,a positive relationship between temperature and AOD during winter and spring seasons whereas a positive relationship between wind speed and AOD in winter and spring seasons over eastern and western routes.Periodic analysis of MODIS AOD and MISR AOD depicts May-Aug as the peak period of aerosol concentration over central Pakistan.The inter-annual analysis shows the aerosol trend remained higher during summer season however rainfall shows the washout effect.Eastern route has higher standard deviation and larger values for aerosol prevalence as compared to western route.The trajectory analysis using the HYSPLIT model suggests the bias of air mass trajectory caused deviation in the aerosol trend in the year 2014.展开更多
文摘Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol optical depths (AOD) at 3 km × 3 km north of 59.9</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">N over ocean were assessed at 550 nm by aerosol robotic network (AERONET) data from coastal sites and marine aerosol network (MAN) data from vessels during June to October 2006 to 2018. Typically, MODIS AOD w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> higher at low and lower at high values than the AERONET AOD. Discrepancies were largest for sites where the Earth’s surface around the site is very heterogeneous (Canadian Archipelago, coast of Greenland). Due to the higher likelihood for sea-ice, MAN and MODIS AOD differed stronger west of Greenland and over the Beaufort Sea than at location in the Greenland and Norwegian Seas and Atlantic. MODIS AOD well captured the inter-seasonal variability found in the AERONET AOD data (R = 0.933). At all sites, MO</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS and AERONET AOD agreement improved as time progressed in the shipping season, hinting at errors in sea-ice vs. open water classification. Overall 75.3% of the MODIS AOD data fell within the limits of the error envelops of the AERONET/MAN AOD data with MAN ranging between 87.5% and 100%. Changes in both MODIS and AERONET mean AOD between two periods of same length (2006-2011, 2013-2018) were explainable by changes in emissions for all sites</span><span style="font-family:Verdana;">.</span>
文摘Due to the recent increase in Arctic shipping, 2006-2020 June to October Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1), and Multi-Angle Implementation of Atmospheric Correction (MAIAC) retrieved aerosol optical depth (AOD) data were examined for changes in AOD from period 1 (P1, 2006-2012) to period 2 (P2, 2014-2020 (P2). Herein, AOD was statistically analyzed on a 0.25° × 0.25° grid and in the airsheds over the various ocean basins over the Arctic north of 59.75°N. According to heatmaps of the correlation between AOD and ship traffic, and AOD and fire emissions for the airsheds, all three AOD products captured the observed inter-annual variability in wildfire occurrence well, and showed wildfire emissions over Siberia were more severe in P2 than P1. Except for the Atlantic, North, and Baltic Seas, Beaufort Sea, and Barents Sea, all three AOD products indicated that AOD was higher over the various basins in P2 than P1, but disagreed on the magnitude. This fact suggests that the detection of changes in the typical low AOD over the Arctic Ocean might be rather qualitative than quantitative. While all products captured increases in AOD due to ships at berth, only MODIS C6.1 caught the elevated AOD due to shipping on the Siberian rivers. Obviously, sub-daily resolutions are required to capture increased AOD due to short-term events like a traveling ship or short-interval fire.
基金Supported by the National Natural Science Foundation of China(No.41276097)
文摘The distributions and correlations of chlorophyll-a(Chl-a),aerosol optical depth(AOD)and ice cover in the southeast Arctic Ocean-Greenland Sea(10°W–10°E,70°–80°N)between 2003 and 2009 were studied using satellite data and statistical analyses.Regression analysis showed correlations between Chl-a and AOD,Chl-a and ice cover,and AOD and ice cover with different time lags.The time lag of Chl-a and AOD indicated their long-term equilibrium relationship.Peaks in AOD and Chl-a and generally occurred in May and July,respectively.Despite the time lag,the correlation between Chl-a and AOD in the study region was as high as 0.7.The peak gap between Chl-a and AOD shifted for about 6 weeks during 2003–2009.In the summer and autumn of 2009,Chl-a and AOD levels were much higher than during the other years,especially in the northern band of the study region(75°–80°N).The driving forces for this localized increase in phytoplankton biomass could be mainly attributed to the very high rate of ice melting in spring and early summer and the high wind speed in autumn,together with the increased deposition of aerosol throughout the year.The unusually high AOD in the spring of 2003 was mainly due to a massive fi re in Russia,which occurred in the fi rst half of the year.Over the 7 years of the study,the sea surface temperature generally decreased.This may have been due to the release of dimethylsulfi de into the air,excreted in large amounts from abundant phytoplankton biomass,and its subsequent reaction,form large amounts of aerosol,and resulting in regional cooling.
基金sponsored by the National Natural Science Foundation of China(Grant No.41206027)the China Postdoctoral Science Foundation(Grant No.2012M511460)+1 种基金the Key Laboratory of Global Change and Marine-Atmospheric Chemistry(Grant No.GCMAC1205)the Public Science and Technology Research Funds Projects of Ocean(Grant No.201105019)
文摘Here we used Empirical Mode Decomposition (EMD) method to study seasonal variability and nonlinear trend of corrected AERONET Aerosol Optical Depth (AOD/Hi) and corrected PM10 mass concentrations (PMmxf(RH)) in Hong Kong during 2005-2011. AODPrli is highly correlated with PMI0xf(RH) in semi-annual and annual time scales (with correlation coefficient 0.67 for semi-annual and 0.79 for annual components, 95% confidence interval). On the semi-annual scale, both AOD/Hi and PM10xf(RH) can capture the two maxima in March and October, respectively, with much stronger amplitude in March proba- bly due to the long-range transport of dust storm. On the annual cycle, the AOD/Hi and PMI0xf(RH), which are negatively correlated with the precipitation and solar radiation, vary coherently with the maxima in February. This annual peak occurs about one month earlier than the first peak of the semi-annual variability in March, but with only half amplitude. During 2005-2011, both AOD/Hi and PM10xf(RH) exhibit the pronounced decreasing trend with the mean rate of 14 gg m-3 per year for PM10xf(RH), which reflects the significant effects of the air pollution control policy in Hong Kong during the past decade. The nonlinear trend analysis indicates that the decreasing of PM10xf(RH) is slower than that of AOD/Hi when the AOD/Hi is less than 0.44 but becomes faster when the AOD/Hi exceeds 0.44. These results illustrate that the AERONET AOD can be used quantitatively to estimate local air-quality variability on the semi-annual, annual, and long-term trend time scales.
文摘利用2000—2013年MODIS-Terra卫星产品提供的气溶胶光学厚度(aerosol optical depth,AOD)资料及NCEP/NCAR再分析资料集,使用奇异值分解(singular value decomposition,SVD)方法,分析了夏季东亚地区AOD与到达地面太阳辐射(downward solar radiation flux,DSRF)相联系的主要模态,并分析了其与夏季风变化的关系。夏季多年平均的AOD分布显示,在东亚地区存在两个AOD大值区(>0.9),分别位于山东、河南、河北交界处附近以及苏中部分地区。而在福建、台湾及其附近洋面上,夏季AOD的值小于0.4。地面太阳辐射总体上呈现出由南往北递增的分布。比较发现,AOD与地面太阳辐射的气候分布较为相似。在保留季节趋势的情况下,运用SVD方法对两者进行分解,结果表明东亚地区AOD与地面太阳辐射表现出较好的正相关关系。由于相对于年际变化而言,季节趋势是更为主要的部分,因而这种同相关系可归因于季风活动的季节性进程。利用SVD1左场时间系数进行相关分析发现:6月(2013年除外),当中国东部气溶胶AOD大而地面太阳辐射亦大时,在中国东南部以及日本岛南部地区,由于气流辐合增强和存在较强的上升运动,降水偏多,而由于副高位置偏南,使得中国中东部偏北地区水汽供应偏弱,降水偏少。由于地面净太阳辐射增强,华北部分地区异常增暖。8月,大陆上空AOD为负(时间系数为负),地面太阳辐射减少,北方降水增多而南方降水减少,华北地区有一小范围的异常降温。上述结果表明北方气溶胶明显偏少时,云量增加,降水将增多,且辐射明显减弱;说明夏季风的季节进程对气溶胶、到达地面的太阳辐射变化等具有重要影响。
基金The MODIS and CALIOP data were obtained from NASA's Level-1 and Atmosphere Archive&Distribution System Distributed Active Center(LAADS DAAC)and Atmospheric Science Data Center(ASDC),respectively.This work was supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91644211)the Fundamental Research Funds for the Central Universities(Grant No.2232019D3-27)+1 种基金the China Postdoctoral Science Foundation(Grant No.2019M651322)and the National Natural Science Foundation of China(Grant Nos.41905131 and 91637101).
文摘Although the concentration of atmospheric particulate matter in Shanghai has declined in recent years,aerosols remain one of the major pollutants affecting air quality.Herein,spatio-seasonal variation in aerosol optical properties and aerosol types were studied overa 10-year period(2006-2015)in Shanghai,China,using satellite data from Moderate Resolution Imaging Spectroradiometer(MODIS)and CloudAerosol Lidar with Orthogonal Polarization(CALIOP).The average aerosol optical depth values for central urban and suburban areas of Shanghai were between 0.9 and 1.0.Clear seasonal variation in aerosol concentrations occurred,causing strongest attenuation in summer and weakest attenuation in autumn.Polluted dust,polluted continental(urban/industrial)and smoke aerosols were the main aerosol types.Desert dust aerosols occurred in the Shanghai area at higher altitudes(greater than 3 km)in spring,related to dusty weather in the north;while in winter,smoke aerosols occurred at high altitudes,related to haze pollution in the north.The aerosols detected in autumn were mainly from local sources,comprising polluted dust,polluted continental,and smoke aerosols.Aerosols in Shanghai clearly reflect both local and regional sources at different times.
基金the International Partnership Program of Chinese Academy of Sciences(IPP)(No.134111KYSB20180021)the National Natural Science Foundations of China(No.41590871)the International Science&Technology Cooperation Program of China(No.2013DFG22820)。
文摘This study finds out seasonal and monthly variations in Aerosol Optical Depth(AOD)over eastern and western routes of China Pakistan Economic Corridor(CPEC)and the relationship between AOD and meteorological parameters(i.e.,temperature,rainfall and wind speed).The Moderate Resolution Imaging Spectroradiometer(MODIS)and Multi-angle Imaging Spectroradiometer(MISR)data was used from the terra satellite for the period of 2000-2016.This study aims to overtake the conventional view of the purpose of using the satellite datasets.This study takes on to the concept that validated satellite data sets rather should be used for the analysis instead of just validation specifically for our study region.Hence,after comparing MODIS AOD with MISR AOD,only MISR AOD dataset is used for further analysis.The results show a decreasing trend of AOD in summer season,a positive relationship between temperature and AOD during winter and spring seasons whereas a positive relationship between wind speed and AOD in winter and spring seasons over eastern and western routes.Periodic analysis of MODIS AOD and MISR AOD depicts May-Aug as the peak period of aerosol concentration over central Pakistan.The inter-annual analysis shows the aerosol trend remained higher during summer season however rainfall shows the washout effect.Eastern route has higher standard deviation and larger values for aerosol prevalence as compared to western route.The trajectory analysis using the HYSPLIT model suggests the bias of air mass trajectory caused deviation in the aerosol trend in the year 2014.