In the restricted three-body problem,the traditional Lagrange points L1 and L2 are the only equilibrium points near the asteroid 243 Ida.The thrust generated by a solar sail over a spacecraft enables the existence of ...In the restricted three-body problem,the traditional Lagrange points L1 and L2 are the only equilibrium points near the asteroid 243 Ida.The thrust generated by a solar sail over a spacecraft enables the existence of new artificial equilibrium points,which depend on the position of the spacecraft with respect to the asteroid and the attitude of the solar sail.Such equilibrium points generate new spots to observe the body from above or below the plane of motion.Such points are very good observational locations due to their stationary condition.This work provides a preliminary analysis to observe Ida through the use of artificial equilibrium points as spots combined with transfer maneuvers between them.Such combination can be used to observe the asteroid from more different points of view in comparison to fixed ones.The analyses are made for a spacecraft equipped with a solar sail and capable of performing bi-impulsive maneuvers.The solar radiation pressure is used both to maintain the equilibrium condition and to reduce the costs of the transfers and/or to create transfers with longer duration.This is a new aspect of the present research,because it combines the continuous thrust with initial and final small impulses,which are feasible for most of the spacecraft,because the magnitudes of the impulses are very low.These combined maneuvers may reduce the transfer times of the maneuvers in most of the cases,compared with the maneuvers based only on continuous thrust.Several options involved in these transfers are shown,like to minimize the fuel spent(Dv)as a function of the transfer time or to extend the duration of the travel between the points.Extended transfer times can be useful when observations are required during the transfers.展开更多
基金financial support from CAPES–Coordination for the Improvement of Higher Education Personnelfrom CEFET-MG–Federal Center for Technological Education of Minas Gerais+1 种基金from CNPQ–National Council for Scientific and Technological Development(Nos.406841/2016-0 and 301338/2016-7)from FAPESP–Sao Paulo Research Foundation(Nos.2016/24561-0,2019/184805,and 2018/07377-6)。
文摘In the restricted three-body problem,the traditional Lagrange points L1 and L2 are the only equilibrium points near the asteroid 243 Ida.The thrust generated by a solar sail over a spacecraft enables the existence of new artificial equilibrium points,which depend on the position of the spacecraft with respect to the asteroid and the attitude of the solar sail.Such equilibrium points generate new spots to observe the body from above or below the plane of motion.Such points are very good observational locations due to their stationary condition.This work provides a preliminary analysis to observe Ida through the use of artificial equilibrium points as spots combined with transfer maneuvers between them.Such combination can be used to observe the asteroid from more different points of view in comparison to fixed ones.The analyses are made for a spacecraft equipped with a solar sail and capable of performing bi-impulsive maneuvers.The solar radiation pressure is used both to maintain the equilibrium condition and to reduce the costs of the transfers and/or to create transfers with longer duration.This is a new aspect of the present research,because it combines the continuous thrust with initial and final small impulses,which are feasible for most of the spacecraft,because the magnitudes of the impulses are very low.These combined maneuvers may reduce the transfer times of the maneuvers in most of the cases,compared with the maneuvers based only on continuous thrust.Several options involved in these transfers are shown,like to minimize the fuel spent(Dv)as a function of the transfer time or to extend the duration of the travel between the points.Extended transfer times can be useful when observations are required during the transfers.