Human monocyte is an important cell type which is involved in various complex human diseases. To better understand the biology of human monocytes and facilitate further studies, we developed the first comprehensive pr...Human monocyte is an important cell type which is involved in various complex human diseases. To better understand the biology of human monocytes and facilitate further studies, we developed the first comprehensive proteome knowledge base specifically for human monocytes by integrating both in vivo and in vitro datasets. The top 2000 expressed genes from in vitro datasets and 779 genes from in vivo experiments were integrated into this study. Altogether, a total of 2237 unique monocyte-expressed genes were cataloged. Biological functions of these monocyte-expressed genes were annotated and classified via Gene Ontology (GO) analysis. Furthermore, by extracting the overlapped genes from in vivo and in vitro datasets, a core gene list including 541 unique genes was generated. Based on the core gene list, further gene-disease associations, pathway and network analyses were performed. Data analyses based on multiple bioinformatics tools produced a large body of biologically meaningful information, and revealed a number of genes such as SAMHDI, G6PD, GPD2 and EN01, which have been reported to be related to immune response, blood biology, bone remodeling, and cancer respectively. As a unique resource, this study can serve as a reference map for future in-depth research on monocytes biology and monocyte-involved human diseases.展开更多
基金ACKNOWLEDGEMENTS HW.D., Y.Z. and FY.D. conceived the idea and designed the study. Y. Z., W.Z. and FY.D. performed the experiments to obtain the in vivo data. Y.Z. and HW.D. wrote and revised the paper. All of the authors participated in data analysis. We thank our laboratory members for the collaboration and helpful discussion. We also thank Min-Sik Kim and his collaborators who published and released the in vitro dataset. This study was partially supported by Grants from NIH (Nos. P50AR055091, R01AR057049, R01AR059781, and R01MH1046 80), and Edward G. Schlieder Endowment. The study also benefited from the grant from the National Natural Science Foundation of China (No. 31371194).
文摘Human monocyte is an important cell type which is involved in various complex human diseases. To better understand the biology of human monocytes and facilitate further studies, we developed the first comprehensive proteome knowledge base specifically for human monocytes by integrating both in vivo and in vitro datasets. The top 2000 expressed genes from in vitro datasets and 779 genes from in vivo experiments were integrated into this study. Altogether, a total of 2237 unique monocyte-expressed genes were cataloged. Biological functions of these monocyte-expressed genes were annotated and classified via Gene Ontology (GO) analysis. Furthermore, by extracting the overlapped genes from in vivo and in vitro datasets, a core gene list including 541 unique genes was generated. Based on the core gene list, further gene-disease associations, pathway and network analyses were performed. Data analyses based on multiple bioinformatics tools produced a large body of biologically meaningful information, and revealed a number of genes such as SAMHDI, G6PD, GPD2 and EN01, which have been reported to be related to immune response, blood biology, bone remodeling, and cancer respectively. As a unique resource, this study can serve as a reference map for future in-depth research on monocytes biology and monocyte-involved human diseases.