The present article reports a novel self‐standing nanostructured Au‐Cu(I)@Na2Ti6O13plasmonic photocatalytic membrane,which is prepared by a hydrothermal reaction followed by a simple subsequent heat treatment proces...The present article reports a novel self‐standing nanostructured Au‐Cu(I)@Na2Ti6O13plasmonic photocatalytic membrane,which is prepared by a hydrothermal reaction followed by a simple subsequent heat treatment process.The morphological structure,elemental composition,crystalline phases,and optical properties of the membrane were studied in detail by field‐emission scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron spectroscopy,X‐ray diffraction,and ultraviolet‐visible spectroscopy.Compared with that of a pure Na2Ti6O13membrane,the Au‐Cu(I)@Na2Ti6O13membrane displayed much higher photocatalytic activity for the decomposition of acetaldehyde,a typical volatile organic compound,under visible light illumination.It was found that the photocatalytic activity of the Au‐Cu(I)@Na2Ti6O13membrane increased as the amount of Au was increased.The membrane loaded with2.85wt%Au showed the highest photocatalytic activity in the decomposition of acetaldehyde of the investigated materials.We found that in the photocatalyst membrane,Na2Ti6O13acted as a support material,Au displayed plasmonic absorption,and Cu(I)behaved as a co‐catalyst.The present membrane materials can avoid the self‐aggregation typically observed during the course of photocatalytic reactions.As a result,they can be easily separated,recycled,and reactivated after their practical application,making these functional materials attractive for use in air cleaning applications.展开更多
基金supported by the National Natural Science Foundation of China(51772230,51461135004)Hubei Foreign Science and Technology Cooperation Project(2017AHB059)the Japan Society for the Promotion of Science(JSPS)for an Invitation Fellowship for Foreign Researchers(L16531)~~
文摘The present article reports a novel self‐standing nanostructured Au‐Cu(I)@Na2Ti6O13plasmonic photocatalytic membrane,which is prepared by a hydrothermal reaction followed by a simple subsequent heat treatment process.The morphological structure,elemental composition,crystalline phases,and optical properties of the membrane were studied in detail by field‐emission scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron spectroscopy,X‐ray diffraction,and ultraviolet‐visible spectroscopy.Compared with that of a pure Na2Ti6O13membrane,the Au‐Cu(I)@Na2Ti6O13membrane displayed much higher photocatalytic activity for the decomposition of acetaldehyde,a typical volatile organic compound,under visible light illumination.It was found that the photocatalytic activity of the Au‐Cu(I)@Na2Ti6O13membrane increased as the amount of Au was increased.The membrane loaded with2.85wt%Au showed the highest photocatalytic activity in the decomposition of acetaldehyde of the investigated materials.We found that in the photocatalyst membrane,Na2Ti6O13acted as a support material,Au displayed plasmonic absorption,and Cu(I)behaved as a co‐catalyst.The present membrane materials can avoid the self‐aggregation typically observed during the course of photocatalytic reactions.As a result,they can be easily separated,recycled,and reactivated after their practical application,making these functional materials attractive for use in air cleaning applications.