期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
A review of automatic detection of epilepsy based on EEG signals
1
作者 Qirui Ren Xiaofan Sun +6 位作者 Xiangqu Fu Shuaidi Zhang Yiyang Yuan Hao Wu Xiaoran Li Xinghua Wang Feng Zhang 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期8-30,共23页
Epilepsy is a common neurological disorder that occurs at all ages.Epilepsy not only brings physical pain to patients,but also brings a huge burden to the lives of patients and their families.At present,epilepsy detec... Epilepsy is a common neurological disorder that occurs at all ages.Epilepsy not only brings physical pain to patients,but also brings a huge burden to the lives of patients and their families.At present,epilepsy detection is still achieved through the observation of electroencephalography(EEG)by medical staff.However,this process takes a long time and consumes energy,which will create a huge workload to medical staff.Therefore,it is particularly important to realize the automatic detection of epilepsy.This paper introduces,in detail,the overall framework of EEG-based automatic epilepsy identification and the typical methods involved in each step.Aiming at the core modules,that is,signal acquisition analog front end(AFE),feature extraction and classifier selection,method summary and theoretical explanation are carried out.Finally,the future research directions in the field of automatic detection of epilepsy are prospected. 展开更多
关键词 EPILEPSY ELECTROENCEPHALOGRAPHY automatic detection analog front end feature extraction CLASSIFIER
下载PDF
An automatic detection of green tide using multi-windows with their adaptive threshold from Landsat TM/ETM plus image 被引量:4
2
作者 WANG Changying CHU Jialan +3 位作者 TAN Meng SHAO Fengjing SUI Yi LI Shujing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期106-114,共9页
Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of... Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of green tide is presented from Landsat TM/ETM plus image which needs not the atmospheric correction. In order to achieve an automatic detection of green tide, a linear relationship(y =0.723 x+0.504) between detection threshold y and subtraction x(x=λnir–λred) is found from the comparing Landsat TM/ETM plus image with the field surveys.Using this relationship, green tide patches can be detected automatically from Landsat TM/ETM plus image.Considering there is brightness difference between different regions in an image, the image will be divided into a plurality of windows(sub-images) with a same size firstly, and then each window will be detected using an adaptive detection threshold determined according to the discovered linear relationship. It is found that big errors will appear in some windows, such as those covered by clouds seriously. To solve this problem, the moving step k of windows is proposed to be less than the window width n. Using this mechanism, most pixels will be detected[n/k]×[n/k] times except the boundary pixels, then every pixel will be assigned the final class(green tide or sea water) according to majority rule voting strategy. It can be seen from the experiments, the proposed detection method using multi-windows and their adaptive thresholds can detect green tide from Landsat TM/ETM plus image automatically. Meanwhile, it avoids the reliance on the accurate atmospheric correction. 展开更多
关键词 automatic detection green tide adaptive threshold Landsat TM/ETM plus image
下载PDF
A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver:Ⅰ. Automatic detection and analysis method 被引量:12
3
作者 RuoXian Zhou XuDong Gu +8 位作者 KeXin Yang GuangSheng Li BinBin Ni Juan Yi Long Chen FuTai Zhao ZhengYu Zhao Qi Wang LiQing Zhou 《Earth and Planetary Physics》 CSCD 2020年第2期120-130,共11页
As a dispersive wave mode produced by lightning strokes, tweek atmospherics provide important hints of lower ionospheric(i.e., D-region) electron density. Based on data accumulation from the WHU ELF/VLF receiver syste... As a dispersive wave mode produced by lightning strokes, tweek atmospherics provide important hints of lower ionospheric(i.e., D-region) electron density. Based on data accumulation from the WHU ELF/VLF receiver system, we develop an automatic detection module in terms of the maximum-entropy-spectral-estimation(MESE) method to identify unambiguous instances of low latitude tweeks.We justify the feasibility of our procedure through a detailed analysis of the data observed at the Suizhou Station(31.57°N, 113.32°E) on17 February 2016. A total of 3961 tweeks were registered by visual inspection;the automatic detection method captured 4342 tweeks, of which 3361 were correct ones, producing a correctness percentage of 77.4%(= 3361/4342) and a false alarm rate of 22.6%(= 981/4342).A Short-Time Fourier Transformation(STFT) was also applied to trace the power spectral profiles of identified tweeks and to evaluate the tweek propagation distance. It is found that the fitting accuracy of the frequency–time curve and the relative difference of propagation distance between the two methods through the slope and through the intercept can be used to further improve the accuracy of automatic tweek identification. We suggest that our automatic tweek detection and analysis method therefore supplies a valuable means to investigate features of low latitude tweek atmospherics and associated ionospheric parameters comprehensively. 展开更多
关键词 tweeks automatic detection WHU-VLF receiver
下载PDF
Quick and automatic detection of co-seismic landslides with multifeature deep learning model
4
作者 Wenchao HUANGFU Haijun QIU +5 位作者 Peng CUI Dongdong YANG Ya LIU Bingzhe TANG Zijing LIU Mohib ULLAH 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第7期2311-2325,共15页
Co-seismic landslide detection is essential for post-disaster rescue and risk assessment after an earthquake event.However,a variety of ground objects,including roads and bare land,have spectral characteristics simila... Co-seismic landslide detection is essential for post-disaster rescue and risk assessment after an earthquake event.However,a variety of ground objects,including roads and bare land,have spectral characteristics similar to those of co-seismic landslides,making it difficult to gather information and assess their impact rapidly and accurately.Therefore,an automatic detection method based on a deep learning model,named ENVINet5,with multiple features(ENVINet5_MF)was proposed to solve this problem and improve the detection accuracy of co-seismic landslides.The ENVINet5_MF method is advantageous for co-seismic landslide detection because it features a landslide gain index(LGI)that effectively eliminates the spectral interference of bare land and roads.We conducted two experiments using multi-temporal PlanetScope images acquired in Hokkaido,Japan,and Mainling,China.The accuracy evaluation and rationality analysis show that ENVINet5_MF performed better than comparative methods and that the co-seismic landslide areas detected by ENVINet5_MF were the most consistent with ground reference data.The findings of this study suggest that ENVINet5_MF can provide an efficient and accurate method for coseismic landslide detection to ensure a rapid response to co-seismic landslide disasters. 展开更多
关键词 Co-seismic landslide automatic detection Deep learning Landslide gain index PlanetScope images
原文传递
The application research on the Automatic Detection and Grading of Microaneurysms in Fundus Images of Diabetic Retinopathy by Artificial Intelligence Deep Learning Algorithms
5
作者 Zhao Xiaomin 《Modern General Practice》 2024年第1期35-39,共5页
This research focuses on the automatic detection and grading of microaneurysms in fundus images of diabetic retinopathy using artificial intelligence deep learning algorithms.By integrating multi-source fundus image d... This research focuses on the automatic detection and grading of microaneurysms in fundus images of diabetic retinopathy using artificial intelligence deep learning algorithms.By integrating multi-source fundus image data and undergoing a rigorous preprocessing workflow,a hybrid deep learning model architecture combining a modified U-Net and a residual neural network was adopted for the study.The experimental results show that the model achieved an accuracy of[X]%in microaneurysm detection,with a recall rate of[Y]%and a precision rate of[Z]%.In terms of grading diabetic retinopathy,the Cohen’s kappa coefficient for agreement with clinical grading was[K],and there were specific sensitivities and specificities for each grade.Compared with traditional methods,this model has significant advantages in processing speed and result consistency.However,it also has limitations such as insufficient data diversity,difficulties for the algorithm in detecting microaneurysms in severely hemorrhagic images,and high computational costs.The results of this research are of great significance for the early screening and clinical diagnosis decision support of diabetic retinopathy.In the future,it is necessary to further optimize the data and algorithms and promote clinical integration and telemedicine applications. 展开更多
关键词 Diabetic retinopathy MICROANEURYSMS Deep learning Fundus images automatic detection and grading
下载PDF
Automatic fovea detection and choroid segmentation for choroidal thickness assessment in optical coherence tomography
6
作者 Chen Yu Lin Hung Ju Chen +3 位作者 Yi Kit Chan Wei Ping Hsia Yu Len Huang Chia Jen Chang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第10期1763-1771,共9页
AIM:To develop an automated model for subfoveal choroidal thickness(SFCT)detection in optical coherence tomography(OCT)images,addressing manual fovea location and choroidal contour challenges.METHODS:Two procedures we... AIM:To develop an automated model for subfoveal choroidal thickness(SFCT)detection in optical coherence tomography(OCT)images,addressing manual fovea location and choroidal contour challenges.METHODS:Two procedures were proposed:defining the fovea and segmenting the choroid.Fovea localization from B-scan OCT image sequence with three-dimensional reconstruction(LocBscan-3D)predicted fovea location using central foveal depression features,and fovea localization from two-dimensional en-face OCT(LocEN-2D)used a mask region-based convolutional neural network(Mask R-CNN)model for optic disc detection,and determined the fovea location based on optic disc relative position.Choroid segmentation also employed Mask R-CNN.RESULTS:For 53 eyes in 28 healthy subjects,LocBscan-3D’s mean difference between manual and predicted fovea locations was 170.0μm,LocEN-2D yielded 675.9μm.LocEN-2D performed better in non-high myopia group(P=0.02).SFCT measurements from Mask R-CNN aligned with manual values.CONCLUSION:Our models accurately predict SFCT in OCT images.LocBscan-3D excels in precise fovea localization even with high myopia.LocEN-2D shows high detection rates but lower accuracy especially in the high myopia group.Combining both models offers a robust SFCT assessment approach,promising efficiency and accuracy for large-scale studies and clinical use. 展开更多
关键词 subfoveal choroidal thickness optical coherence tomography automatic foveal detection automatic choroid segmentation
原文传递
Automatic detection of sow estrus using a lightweight real-time detector and thermal images
7
作者 Haibo Zheng Hang Zhang +2 位作者 Shuang Song Yue Wang Tonghai Liu 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期194-207,共14页
Determination of ovulation time is one of the most important tasks in sow reproduction management.Temperature variation in the vulva of the sows can be used as a predictor of ovulation time.However,the skin temperatur... Determination of ovulation time is one of the most important tasks in sow reproduction management.Temperature variation in the vulva of the sows can be used as a predictor of ovulation time.However,the skin temperatures of sows in existing studies are obtained manually from infrared thermal images,posing an obstacle to the automatic prediction of ovulation time.In this study,an improved YOLO-V5s detector based on feature fusion and dilated convolution(FDYOLOV5s)was proposed for the automatic extraction of the vulva temperature of sows based on infrared thermal images.For the purpose of reducing the model complexity,the depthwise separable convolution and the modified lightweight ShuffleNet-V2 module were introduced in the backbone.Meanwhile,the feature fusion network structure of the model was simplified for efficiency,and a mixed dilated convolutional module was designed to obtain global features.The experimental results show that FD-YOLOV5s outperformed the other nine methods,with a mean average precision(mAP)of 99.1%,an average frame rate of 156.25 fps,and a model size of only 3.86 MB,indicating that the method effectively simplifies the model while ensuring detection accuracy.Using a linear regression between manual extraction and the results extracted using this method in randomly selected thermal images,the coefficients of determination for maximum and average vulvar temperatures reached 99.5%and 99.3%,respectively.The continuous vulva temperature of sows was obtained by the target detection algorithm,and the sow estrus detection was performed by the temperature trend and compared with the manually detected estrus results.The results showed that the sensitivity,specificity,and error rate of the estrus detection algorithm were 89.3%,94.5%,and 5.8%,respectively.The method achieves real-time and accurate extraction of sow vulva temperature and can be used for the automatic detection of sow estrus,which could be helpful for the automatic prediction of ovulation time. 展开更多
关键词 automatic estrus detection thermal images real-time detector vulva temperature mixed dilated convolutional
原文传递
An automatic seismic signal detection method based on fourth-order statistics and applications 被引量:2
8
作者 刘希强 蔡寅 +4 位作者 赵瑞 曲保安 赵银刚 冯志军 李红 《Applied Geophysics》 SCIE CSCD 2014年第2期128-138,252,共12页
Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detect... Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detecting regional seismic events and a fourth-order statistics algorithm with the Akaike information criterion(AIC) for determining the direct wave phase, based on the differences, or changes, in energy, frequency, and amplitude of the direct P- or S-waves signal and noise. Simulations suggest for that the proposed fourth-order statistics result in high resolution even for weak signal and noise variations at different amplitude, frequency, and polarization characteristics. To improve the precision of establishing the S-waves onset, first a specific segment of P-wave seismograms is selected and the polarization characteristics of the data are obtained. Second, the S-wave seismograms that contained the specific segment of P-wave seismograms are analyzed by S-wave polarization filtering. Finally, the S-wave phase onset times are estimated. The proposed algorithm was used to analyze regional earthquake data from the Shandong Seismic Network. The results suggest that compared with conventional methods, the proposed algorithm greatly decreased false and missed earthquake triggers, and improved the detection precision of direct P- and S-wave phases. 展开更多
关键词 Seismic signal P and S-waves automatic detection correction trigger function
下载PDF
Automatic detection of ruminant cows’ mouth area during rumination based on machine vision and video analysis technology 被引量:5
9
作者 Yanru Mao Dongjian He Huaibo Song 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第1期186-191,共6页
In order to realize the automatic monitoring of ruminant activities of cows,an automatic detection method for the mouth area of ruminant cows based on machine vision technology was studied.Optical flow was used to cal... In order to realize the automatic monitoring of ruminant activities of cows,an automatic detection method for the mouth area of ruminant cows based on machine vision technology was studied.Optical flow was used to calculate the relative motion speed of each pixel in the video frame images.The candidate mouth region with large motion ranges was extracted,and a series of processing methods,such as grayscale processing,threshold segmentation,pixel point expansion and adjacent region merging,were carried out to extract the real area of cows’mouth.To verify the accuracy of the proposed method,six videos with a total length of 96 min were selected for this research.The results showed that the highest accuracy was 87.80%,the average accuracy was 76.46%and the average running time of the algorithm was 6.39 s.All the results showed that this method can be used to detect the mouth area automatically,which lays the foundation for automatic monitoring of cows’ruminant behavior. 展开更多
关键词 ruminant cows mouth area automatic detection machine vision video analysis technology ruminant behavior optical flow
原文传递
Design and test of automatic detection platform for soil fragmentation rate in rotary tillage
10
作者 Xinwu Du Xulong Yang +1 位作者 Jing Pang Jiangtao Ji 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第5期40-49,共10页
As an important index of soil crushing performance of rotary tiller,the soil fragmentation rate is still limited to manual measurement.In this study,an automatic detection platform for soil fragmentation rate was desi... As an important index of soil crushing performance of rotary tiller,the soil fragmentation rate is still limited to manual measurement.In this study,an automatic detection platform for soil fragmentation rate was designed,which integrated soil intake,screening,weighing and calculation of soil fragmentation rate.This platform can solve the problem that the index of the soil fragmentation rate cannot be detected quickly and effectively after rotary tillage,which leads to difficulty in field quality evaluation.The platform was mainly composed of a shovel soil module,conveying module,screening module,weighing module and automatic control system,which could realize single-line and multi-point automatic soil fragmentation rate detection.Based on the homogeneous dry slope model,the tilting angles of soil intake and soil feeding after rotary tillage on the platform were determined to be 30.10°and 26.67°,respectively.According to the principle of flow conservation,a rotary circulation screening module was designed to obtain soil particle size grading.A method based on the principle of multi-line and multi-point measurement was developed to detect soil fragmentation rate.The influence of screening speed on screening effect was analyzed,and the reasonable value of screening speed was determined to be 0.5 m/s.A field performance test was carried out in October 2019 to verify the detection performance of the platform.The results showed that,compared with the manual test method,the maximum test error was no more than 11%,the minimum test error was less than 4%,the maximum single test time was no more than 2 min,and the total test time of each test area was no more than 30 min.The efficiency of single-point detection was significantly better than the manual detection,which indicated that the design in this study met the requirements of rapid detection of soil fragmentation rate,and provided a new idea for the automatic detection of quality of rotary tillage. 展开更多
关键词 rotary tillage soil fragmentation rate automatic detection DESIGN TEST
原文传递
Automatic Diagnosis of Polycystic Ovarian Syndrome Using Wrapper Methodology with Deep Learning Techniques
11
作者 Mohamed Abouhawwash S.Sridevi +3 位作者 Suma Christal Mary Sundararajan Rohit Pachlor Faten Khalid Karim Doaa Sami Khafaga 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期239-253,共15页
One of the significant health issues affecting women that impacts their fertility and results in serious health concerns is Polycystic ovarian syndrome(PCOS).Consequently,timely screening of polycystic ovarian syndrom... One of the significant health issues affecting women that impacts their fertility and results in serious health concerns is Polycystic ovarian syndrome(PCOS).Consequently,timely screening of polycystic ovarian syndrome can help in the process of recovery.Finding a method to aid doctors in this procedure was crucial due to the difficulties in detecting this condition.This research aimed to determine whether it is possible to optimize the detection of PCOS utilizing Deep Learning algorithms and methodologies.Additionally,feature selection methods that produce the most important subset of features can speed up calculation and enhance the effectiveness of classifiers.In this research,the tri-stage wrapper method is used because it reduces the computation time.The proposed study for the Automatic diagnosis of PCOS contains preprocessing,data normalization,feature selection,and classification.A dataset with 39 characteristics,including metabolism,neuroimaging,hormones,and biochemical information for 541 subjects,was employed in this scenario.To start,this research pre-processed the information.Next for feature selection,a tri-stage wrapper method such as Mutual Information,ReliefF,Chi-Square,and Xvariance is used.Then,various classification methods are tested and trained.Deep learning techniques including convolutional neural network(CNN),multi-layer perceptron(MLP),Recurrent neural network(RNN),and Bi long short-term memory(Bi-LSTM)are utilized for categorization.The experimental finding demonstrates that with effective feature extraction process using tri stage wrapper method+CNN delivers the highest precision(97%),high accuracy(98.67%),and recall(89%)when compared with other machine learning algorithms. 展开更多
关键词 Deep learning automatic detection polycystic ovarian syndrome tri-stage wrapper method mutual information RELIEF CHI-SQUARE
下载PDF
Pavement Cracks Coupled With Shadows:A New Shadow-Crack Dataset and A Shadow-Removal-Oriented Crack Detection Approach 被引量:2
12
作者 Lili Fan Shen Li +3 位作者 Ying Li Bai Li Dongpu Cao Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1593-1607,共15页
Automatic pavement crack detection is a critical task for maintaining the pavement stability and driving safety.The task is challenging because the shadows on the pavement may have similar intensity with the crack,whi... Automatic pavement crack detection is a critical task for maintaining the pavement stability and driving safety.The task is challenging because the shadows on the pavement may have similar intensity with the crack,which interfere with the crack detection performance.Till to the present,there still lacks efficient algorithm models and training datasets to deal with the interference brought by the shadows.To fill in the gap,we made several contributions as follows.First,we proposed a new pavement shadow and crack dataset,which contains a variety of shadow and pavement pixel size combinations.It also covers all common cracks(linear cracks and network cracks),placing higher demands on crack detection methods.Second,we designed a two-step shadow-removal-oriented crack detection approach:SROCD,which improves the performance of the algorithm by first removing the shadow and then detecting it.In addition to shadows,the method can cope with other noise disturbances.Third,we explored the mechanism of how shadows affect crack detection.Based on this mechanism,we propose a data augmentation method based on the difference in brightness values,which can adapt to brightness changes caused by seasonal and weather changes.Finally,we introduced a residual feature augmentation algorithm to detect small cracks that can predict sudden disasters,and the algorithm improves the performance of the model overall.We compare our method with the state-of-the-art methods on existing pavement crack datasets and the shadow-crack dataset,and the experimental results demonstrate the superiority of our method. 展开更多
关键词 automatic pavement crack detection data augmentation compensation deep learning residual feature augmentation shadow removal shadow-crack dataset
下载PDF
Cow-YOLO:Automatic cow mounting detection based on non-local CSPDarknet53 and multiscale neck
13
作者 De Li Junhao Wang +5 位作者 Zhe Zhang Baisheng Dai Kaixuan Zhao Weizheng Shen Yanling Yin Yang Li 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第3期193-202,共10页
Cows mounting behavior is a significant manifestation of estrus in cows.The timely detection of cows mounting behavior can make cows conceive in time,thereby improving milk production of cows and economic benefits of ... Cows mounting behavior is a significant manifestation of estrus in cows.The timely detection of cows mounting behavior can make cows conceive in time,thereby improving milk production of cows and economic benefits of the pasture.Existing methods of mounting behavior detection are difficult to achieve precise detection under occlusion and severe scale change environments and meet real-time requirements.Therefore,this study proposed a Cow-YOLO model to detect cows mounting behavior.To meet the needs of real-time performance,YOLOv5s model is used as the baseline model.In order to solve the problem of difficult detection of cows mounting behavior in an occluded environment,the CSPDarknet53 of YOLOv5s is replaced with Non-local CSPDarknet53,which enables the network to obtain global information and improves the model’s ability to detect the mounting cows.Next,the neck of YOLOv5s is redesigned to Multiscale Neck,reinforcing the multi-scale feature fusion capability of model to solve difficulty detection under dramatic scale changes.Then,to further increase the detection accuracy,the Coordinate Attention Head is integrated into YOLOv5s.Finally,these improvements form a novel cow mounting detection model called Cow-YOLO and make Cow-YOLO more suitable for cows mounting behavior detection in occluded and drastic scale changes environments.Cow-YOLO achieved a precision of 99.7%,a recall of 99.5%,a mean average precision of 99.5%,and a detection speed of 156.3 f/s on the test set.Compared with existing detection methods of cows mounting behavior,Cow-YOLO achieved higher detection accuracy and faster detection speed in an occluded and drastic scale-change environment.Cow-YOLO can assist ranch breeders in achieving real-time monitoring of cows estrus,enhancing ranch economic efficiency. 展开更多
关键词 cows mounting automatic detection Cow-YOLO computer vision CSPDarknet53 multiscale neck
原文传递
Auroral event detection using spatiotemporal statistics of local motion vectors 被引量:1
14
作者 WANG Qian LIANG Jimin HU Zejun 《Advances in Polar Science》 2013年第3期175-182,共8页
The analysis and exploration of auroral dynamics are very significant for studying auroral mechanisms. This paper proposes a method based on auroral dynamic processes for detecting auroral events automatically. We fir... The analysis and exploration of auroral dynamics are very significant for studying auroral mechanisms. This paper proposes a method based on auroral dynamic processes for detecting auroral events automatically. We first obtained the motion fields using the multiscale fluid flow estimator. Then, the auroral video frame sequence was represented by the spatiotemporal statistics of local motion vectors. Finally, automatic auroral event detection was achieved. The experimental results show that our methods could detect the required auroral events effectively and accurately, and that the detections were independent on any specific auroral event. The proposed method makes it feasible to statistically analyze a large number of continuous observations based on the auroral dynamic process. 展开更多
关键词 automatic detection auroral event fluid flow
下载PDF
Research on Known Vulnerability Detection Method Based on Firmware Analysis
15
作者 Wenjing Wang Tengteng Zhao +3 位作者 Xiaolong Li Lei Huang Wei Zhang Hui Guo 《Journal of Cyber Security》 2022年第1期1-15,共15页
At present,the network security situation is becoming more and more serious.Malicious network attacks such as computer viruses,Trojans and hacker attacks are becoming more and more rampant.National and group network a... At present,the network security situation is becoming more and more serious.Malicious network attacks such as computer viruses,Trojans and hacker attacks are becoming more and more rampant.National and group network attacks such as network information war and network terrorism have a serious damage to the production and life of the whole society.At the same time,with the rapid development of Internet of Things and the arrival of 5G era,IoT devices as an important part of industrial Internet system,have become an important target of infiltration attacks by hostile forces.This paper describes the challenges facing firmware vulnerability detection at this stage,and introduces four automatic detection and utilization technologies in detail:based on patch comparison,based on control flow,based on data flow and ROP attack against buffer vulnerabilities.On the basis of clarifying its core idea,main steps and experimental results,the limitations of its method are proposed.Finally,combined with four automatic detection methods,this paper summarizes the known vulnerability detection steps based on firmware analysis,and looks forward to the follow-up work. 展开更多
关键词 IoT devices vulnerability mining automatic detection static analysis
下载PDF
Localized Coverage Connectivity Based on Shape and Area Using Mobile Sensor Robots in Wireless Sensor Networks 被引量:1
16
作者 Rajaram Pichamuthu Prakasam Periasamy 《Circuits and Systems》 2016年第8期1962-1975,共15页
A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as... A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as battlefield inspection and biological detection. The Constrained Motion and Sensor (CMS) Model represents the features and explain k-step reach ability testing to describe the states. The description and calculation based on CMS model does not solve the problem in mobile robots. The ADD framework based on monitoring radio measurements creates a threshold. But the methods are not effective in dynamic coverage of complex environment. In this paper, a Localized Coverage based on Shape and Area Detection (LCSAD) Framework is developed to increase the dynamic coverage using mobile robots. To facilitate the measurement in mobile robots, two algorithms are designed to identify the coverage area, (i.e.,) the area of a coverage hole or not. The two algorithms are Localized Geometric Voronoi Hexagon (LGVH) and Acquaintance Area Hexagon (AAH). LGVH senses all the shapes and it is simple to show all the boundary area nodes. AAH based algorithm simply takes directional information by locating the area of local and global convex points of coverage area. Both these algorithms are applied to WSN of random topologies. The simulation result shows that the proposed LCSAD framework attains minimal energy utilization, lesser waiting time, and also achieves higher scalability, throughput, delivery rate and 8% maximal coverage connectivity in sensor network compared to state-of-art works. 展开更多
关键词 Localized Coverage Wireless Senor Network automatic detection Framework Geometric Voronoi Polygon Acquaintance Area Polygons Environment Monitoring Mobile Sensor Robots
下载PDF
An Automatic HFO Detection Method Combining Visual Inspection Features with Multi-Domain Features
17
作者 Xiaochen Liu Lingli Hu +4 位作者 Chenglin Xu Shuai Xu Shuang Wang Zhong Chen Jizhong Shen 《Neuroscience Bulletin》 SCIE CAS CSCD 2021年第6期777-788,共12页
As an important promising biomarker,high frequency oscillations(HFOs)can be used to track epileptic activity and localize epileptogenic zones.However,visual marking of HFOs from a large amount of intracranial electroe... As an important promising biomarker,high frequency oscillations(HFOs)can be used to track epileptic activity and localize epileptogenic zones.However,visual marking of HFOs from a large amount of intracranial electroencephalogram(iEEG)data requires a great deal of time and effort from researchers,and is also very dependent on visual features and easily influenced by subjective factors.Therefore,we proposed an automatic epileptic HFO detection method based on visual features and non-intuitive multi-domain features.To eliminate the interference of continuous oscillatory activity in detected sporadic short HFO events,the iEEG signals adjacent to the detected events were set as the neighboring environmental range while the number of oscillations and the peak–valley differences were calculated as the environmental reference features.The proposed method was developed as a MatLab-based HFO detector to automatically detect HFOs in multi-channel,long-distance iEEG signals.The performance of our detector was evaluated on iEEG recordings from epileptic mice and patients with intractable epilepsy.More than 90%of the HFO events detected by this method were confirmed by experts,while the average missed-detection rate was<10%.Compared with recent related research,the proposed method achieved a synchronous improvement of sensitivity and specificity,and a balance between low false-alarm rate and high detection rate.Detection results demonstrated that the proposed method performs well in sensitivity,specificity,and precision.As an auxiliary tool,our detector can greatly improve the efficiency of clinical experts in inspecting HFO events during the diagnosis and treatment of epilepsy. 展开更多
关键词 EPILEPSY HFO automatic detection Combined features
原文传递
微型计算机控制系统的可靠性分析
18
作者 贾海 《郑州大学学报(理学版)》 CAS 1987年第2期31-33,共3页
目前国际上已广泛开展微机系统可靠性的研究,对控制系统进行可靠性设计。对于实时处理控制系统采用自动检测及容错设计技术,以提高系统的可靠性。假设某微机控制系统的可靠度为R(f),则该系统的失效率为F(t),即从0到t时刻内发生故障的概... 目前国际上已广泛开展微机系统可靠性的研究,对控制系统进行可靠性设计。对于实时处理控制系统采用自动检测及容错设计技术,以提高系统的可靠性。假设某微机控制系统的可靠度为R(f),则该系统的失效率为F(t),即从0到t时刻内发生故障的概率为F(t)=1-R(t)。 展开更多
关键词 automatic detection Fault—tolerant technique RELIABILITY Micno—computer.
下载PDF
Automatic Determination of Water Hardness by Vector Colorimetry with Acid Chrome Blue K
19
作者 Su Gao Ming-Liang Ye +2 位作者 Rui Ma Ai-Rong Liu Hong-Wen Gao 《Journal of Analysis and Testing》 EI CSCD 2023年第2期157-162,共6页
Based on the Mg^(2+)complexation with acid chrome blue K(ACBK)at pH 10.2,an automatic system was designed to determine total hardness of water.The system consists of a vector colorimeter,a multi-channel sampling pump ... Based on the Mg^(2+)complexation with acid chrome blue K(ACBK)at pH 10.2,an automatic system was designed to determine total hardness of water.The system consists of a vector colorimeter,a multi-channel sampling pump and both reagents A and B.Two kinds of reagent solutions were prepared and used in this system,i.e.,ammoniacal buffer and ACBK—disodium magnesium EDTA solutions.The experimental results of the standard solutions containing 2 and 3 mg/L of total hardness showed that the relative standard deviations(RSDs)were 1.9%and 2.2%,respectively,and the limit of detection(LOD)was only 0.035 mg/L.The detection of four natural water samples showed that the recoveries were between 85.0%and 108.6%,consistent with those obtained by ICP-AES method. 展开更多
关键词 Total hardness Online automatic detection Acid chrome blue K Vector chromaticity measuring device
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部