期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Quantitative Structure Anti-Cancer Activity Relationship (QSAR) of a Series of Ruthenium Complex Azopyridine by the Density Functional Theory (DFT) Method 被引量:5
1
作者 Kouakou Nobel N’guessan Mamadou Guy-Richard Koné +2 位作者 Kafoumba Bamba Ouattara Wawohinlin Patrice Nahossé Ziao 《Computational Molecular Bioscience》 2017年第2期19-31,共13页
A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) an... A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) and colon cancer (WIDR). Thus, in order to predict the cytotoxic potentials of these compounds, quantitative structure-activity relationship studies were carried out using the methods of quantum chemistry. Five Quantitative Structure Activity Relationship (QSAR) models were obtained from the determined quantum descriptors and the different activities. The models present the following statistical indicators: regression correlation coefficient R2 = 0.986 - 0.905, standard deviation S = 0.516 - 0.153, Fischer test F = 106.718 - 14.220, correlation coefficient of cross-validation = 0.985- 0.895 and = 0.010 - 0.001. The statistical characteristics of the established QSAR models satisfy the acceptance and external validation criteria, thereby accrediting their good performance. The models developed show that the variation of the free enthalpy of reaction , the dipole moment μ and the charge of the ligand in the complex Ql, are the explanatory and predictive quantum descriptors correlated with the values of the anti-cancer activity of the studied complexes. Moreover, the charge of the ligand is the priority descriptor for the prediction of the cytotoxicity of the compounds studied. Furthermore, QSAR models developed are statistically significant and predictive, and could be used for the design and synthesis of new anti-cancer molecules. 展开更多
关键词 RUTHENIUM azopyridine Complex ANTI-CANCER QSAR DFT METHOD
下载PDF
NBO Population Analysis and Electronic Calculation of Four Azopyridine Ruthenium Complexes by DFT Method 被引量:1
2
作者 N’Guessan Kouakou Nobel Kafoumba Bamba +1 位作者 Ouattara Wawohinlin Patrice Nahossé Ziao 《Computational Chemistry》 2017年第1期51-64,共14页
The molecular structure, the Natural Bond orbital (NBO) and the Time Dependent-DFT of both isomers cis or γ-Cl and trans or δ-Cl of RuCl2(L)2, where L stands respectively for 2-phenylazopyridine (Azpy), 2,4-dimethyl... The molecular structure, the Natural Bond orbital (NBO) and the Time Dependent-DFT of both isomers cis or γ-Cl and trans or δ-Cl of RuCl2(L)2, where L stands respectively for 2-phenylazopyridine (Azpy), 2,4-dimethyl-6-[phenylazo]pyridine (Dazpy), 2-[(3,5-dimethylphenyl)azopyridine] (Mazpy) and 2-pyridylazonaphtol (Nazpy) were calculated with DFT method at B3LYP/LANL2DZ level. The prediction of the frontier orbitals (Highest Occupied Molecular Orbital or HOMO and Lowest Unoccupied Molecular Orbital or LUMO) shows that the most active complexes suitable for electronic reactions are admitted to be the trans isomers. Moreover, δ-RuCl2 (Azpy)2 is discovered to react more actively as photo-sensitizer since its energy gap is the minimum. Besides, electronic structures of all complexes through NBO calculation indicate that Ru-N bonds are made of delocalization of occupancies from lone pair orbital of N atoms to the ruthenium. Moreover, Ru was assumed to have almost the same charge regardless the structure of the azopyridine ligands in the complex indicating that the ligands provide only a steric effect that is responsible for the ruthenium’s selectivity. Concerning the transition state, NBO analysis also highlights that the transition LP(Ru) π*(N1-N2) does correspond to t2g?π*(L). This transition is assumed to correspond to Metal to Ligand Charge Transfer (MLCT) that is responsible for the photo-sensitiveness of the metallic complex. Besides, TDDFT calculation of complexes showed that δ-RuCl2(Nazpy)2 displays the largest band during the absorption. For that reason, it is admitted to be the best photosensitizer due to a large system of conjugation provided by Nazpy ligand. 展开更多
关键词 Natural BOND ORBITAL (NBO) HOMO LUMO azopyridine Ligand MLCT LLCT
下载PDF
Theoretical Studies of Photodynamic Therapy Properties of Azopyridine <i>δ</i>-OsCl<sub>2</sub>(Azpy)<sub>2</sub>Complex as a Photosensitizer by a TDDFT Method 被引量:1
3
作者 Wawohinlin Patrice Ouattara Kafoumba Bamba +7 位作者 Affi Sopi Thomas Fatogoma Diarrassouba Lamoussa Ouattara Massapihanhoro Pierre Ouattara Kouakou Nobel N'guessan Mamadou Guy Richard Kone Charles Guillaume Kodjo Nahossé Ziao 《Computational Chemistry》 2021年第1期64-84,共21页
Photochemical reactions have an important place in photodynamic treatments. A good use of this therapeutic method requires a good mastery of the mechanisms of the reactions involved. Therefore, we have explored in thi... Photochemical reactions have an important place in photodynamic treatments. A good use of this therapeutic method requires a good mastery of the mechanisms of the reactions involved. Therefore, we have explored in this work the photosensitization mechanism of an organometallic complex of azopyridine <em>δ</em>-OsCl<sub>2</sub>(Azpy)<sub>2</sub> through a calculation with the method of Time Dependent Density Functional Theory TDDFT. First, we evaluated the effect of polar and non-polar solvents on the triplet and singlet excited states of this complex. Then secondly, we highlighted the photosensitization mechanism to understand how the complex acts over the diseased cells. These investigations have shown that the <em>δ</em>-OsCl<sub>2</sub>(Azpy)<sub>2</sub> complex is likely to develop photodynamic activity according to two mechanisms: on one hand, it can generate damage to DNA bases or target tissues indirectly through the production of singlet oxygen in water and in DMSO. On the second hand, through the production of the anionic superoxide radical <img src="Edit_a1e628d6-dcd2-41c6-bf3c-7e3cad491857.png" alt="" />in water can act directly or indirectly on these substrates. In addition, polar solvents are assumed to better carry out the photochemical reactions of this azopyridine complex of osmium. 展开更多
关键词 Time Dependent-Density Functional Theory azopyridine Excited States PHOTOSENSITIZATION Photodynamic Therapy OSMIUM
下载PDF
Molecular Structure, Electronic Structure, Properties and Analyses of Five Azopyridine Ruthenium Complexes α-Cl, β-Cl, γ-Cl, δ-Cl and ε-Cl of RuCl<sub>2</sub>(4,6-Dimethyl-Phenylazopyridine)<sub>2</sub>as Potential Cancer Drugs: DFT and TD-DFT Investigations
4
作者 Nobel Kouakou N’Guessan Kafoumba Bamba +1 位作者 Ouattara Wawohinlin Patrice NahosséZiao 《Computational Chemistry》 2018年第3期27-46,共20页
Ground state geometries, natural bond orbital (NBO), analysis of frontier molecular orbitals (FMOs), analysis and spectral (RMN and UV-Visible) properties of five azopyridine ruthenium (II) complexes α-Cl, β-Cl, γ-... Ground state geometries, natural bond orbital (NBO), analysis of frontier molecular orbitals (FMOs), analysis and spectral (RMN and UV-Visible) properties of five azopyridine ruthenium (II) complexes α-Cl, β-Cl, γ-Cl, δ-Cl and ε-Cl of RuCl2(Dazpy)2 have been theoretically studied by the Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods using two basis sets: Lanl2DZ and a generic basis set in gas or in chloroform solvent. Dazpy stands for 4,6-dimethyl-phenylazopyridine. Optimized geometry shows that, except β-Cl, all the other four isomers α-Cl, γ-Cl, δ-Cl and ε-Cl are C2 symmetrical. Otherwise, a good agreement was found between experimental and the calculated geometry and NMR data. Moreover, Lanl2DZ effective core potential basis set provides good chemical shifts and geometric properties. Furthermore, the prediction of the frontier orbitals (Highest Occupied Molecular Orbital or HOMO and Lowest Unoc-cupied Molecular Orbital or LUMO) shows that the most active isomer suita-ble for electronic reactions is admitted to be δ-Cl. Besides, the NBO analysis indicates that the Ru-N is formed by the electron delocalization of lone pair atomic orbital of N2 and Npy to Ru. Also, the strongest interactions between LP(N) with LP*(Ru) and LP(Cl) with LP*(Ru) stabilize the molecular struc-ture. In addition, NBO shows that the five d orbitals of Ru in the complex are organized so that there is no order of priority from one complex to another. Therefore, the transition LP(Ru) → π*(N1 = N2) corresponding to Metal to Li-gand Charge Transfer (MLCT) is in reality no more than d → π*. Besides, TDDFT prediction in chloroform solvent reveals that all the five isomerics complexes absorb in the visible region as well as efficient photosensitizers. What’s more, δ-RuCl2(dazpy)2 can potentially act as the excellent sensitizer with a large band of absorption in visible region and a small excited energy. This study can help design and find out the ability or properties of the com-plex to behave as sensitizer or potential cancer drugs. 展开更多
关键词 azopyridine DFT NBO PSEUDO-POTENTIAL Ru(II) Complexes
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部