Abstract In this study, the proton and neutron densities, charge densities, rms nuclear charge radii, rms nuclear mass radii, rms nuclear proton, neutron radii, and neutron skin thickness are calculated by using Harfr...Abstract In this study, the proton and neutron densities, charge densities, rms nuclear charge radii, rms nuclear mass radii, rms nuclear proton, neutron radii, and neutron skin thickness are calculated by using Harfree-Fock method with an effective nucleon-nucleon Skyrme interactions with SⅠ, SⅡ, SⅣ, T3, SKM, and SKM^* parameters. These nuclear properties for the neutron-rich isotopes of B (Boron) are presented. The calculated results are compared with the experimental and theoretical results of other researchers.展开更多
In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isoto...In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isotopic compositions. The B concentrations and δ^(11) B values of brines in the QSL range from 51.6 mg/L to138.4 mg/L, and from +9.32& to +13.08&, respectively. By comparison of B concentrations and TDS of brines in QSL with evaporation paths of brackish water, we found that B enrichment of brines primarily results from strong evaporation and concentration of Qarhan lake water. Combining with comparisons of B concentrations, TDS, p H values and δ^(11) B values of brines, previously elemental ratios(K/Cl, Mg/Cl, Ca/Cl, B/Cl) and δ^(11) B values of halite from a sediment core(ISL1 A), we observe good correlations between B concentrations and TDS, TDS and pH values, pH and δ^(11) B values of brines, which demonstrate that higher B concentrations and more positive δ^(11) B values of halite indicate higher salinity of the Qarhan paleolake water as well as drier paleoclimatic conditions. Based on this interpretation of the δ^(11) B values of halite in core ISL1 A, higher salinity of the Qarhan paleolake occurred during two intervals, around 46-34 ka and26-9 ka, which are almost coincident with the upper and lower halite-dominated salt layers in core ISL1 A,drier climate phases documented from the δ^(18) O record of carbonate in core ISL1 A and the paleomoisture record in monsoonal central Asia, and a higher solar insolation at 30°N. These results demonstrate that the δ^(11) B values of halite in the arid Qaidam Basin could be regarded as a new proxy for reconstructing the salinity record of paleolake water as well as paleoclimate conditions.展开更多
Accurate isotope shift factors of the 2s2p^(3,1)P_1~o–2s^2 ~1S_0 transitions in B II, obtained with the multi-configuration Dirac–Hartree–Fock and the relativistic configuration interaction methods, are reported....Accurate isotope shift factors of the 2s2p^(3,1)P_1~o–2s^2 ~1S_0 transitions in B II, obtained with the multi-configuration Dirac–Hartree–Fock and the relativistic configuration interaction methods, are reported. We found a linear correlation relation between the mass shift factors and the energies for the transitions concerned, considering all-order electron correlations. This relation is important for estimating the uncertainty in the calculation of isotope shift factors. These atomic data can be used to extract the nuclear mean-square charge radii of the boron isotopes with halo structures or to resolve the high precise spectroscopy of B II in astronomical observation.展开更多
文摘Abstract In this study, the proton and neutron densities, charge densities, rms nuclear charge radii, rms nuclear mass radii, rms nuclear proton, neutron radii, and neutron skin thickness are calculated by using Harfree-Fock method with an effective nucleon-nucleon Skyrme interactions with SⅠ, SⅡ, SⅣ, T3, SKM, and SKM^* parameters. These nuclear properties for the neutron-rich isotopes of B (Boron) are presented. The calculated results are compared with the experimental and theoretical results of other researchers.
基金financially supported by the National Natural Science Foundation of China(Grant Nos. 41872093, 41502096) Foundation of Qinghai Science & Technology Department (2016-ZJ-715) One-Thousand InnovativeTalent Project of Qinghai Province (Grant to QS Fan)
文摘In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isotopic compositions. The B concentrations and δ^(11) B values of brines in the QSL range from 51.6 mg/L to138.4 mg/L, and from +9.32& to +13.08&, respectively. By comparison of B concentrations and TDS of brines in QSL with evaporation paths of brackish water, we found that B enrichment of brines primarily results from strong evaporation and concentration of Qarhan lake water. Combining with comparisons of B concentrations, TDS, p H values and δ^(11) B values of brines, previously elemental ratios(K/Cl, Mg/Cl, Ca/Cl, B/Cl) and δ^(11) B values of halite from a sediment core(ISL1 A), we observe good correlations between B concentrations and TDS, TDS and pH values, pH and δ^(11) B values of brines, which demonstrate that higher B concentrations and more positive δ^(11) B values of halite indicate higher salinity of the Qarhan paleolake water as well as drier paleoclimatic conditions. Based on this interpretation of the δ^(11) B values of halite in core ISL1 A, higher salinity of the Qarhan paleolake occurred during two intervals, around 46-34 ka and26-9 ka, which are almost coincident with the upper and lower halite-dominated salt layers in core ISL1 A,drier climate phases documented from the δ^(18) O record of carbonate in core ISL1 A and the paleomoisture record in monsoonal central Asia, and a higher solar insolation at 30°N. These results demonstrate that the δ^(11) B values of halite in the arid Qaidam Basin could be regarded as a new proxy for reconstructing the salinity record of paleolake water as well as paleoclimate conditions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91436103,11404025,and 91536106)the Research Program of National University of Defense Technology,China(Grant No.JC15-0203)the China Postdoctoral Science Foundation(Grant No.2014M560061)
文摘Accurate isotope shift factors of the 2s2p^(3,1)P_1~o–2s^2 ~1S_0 transitions in B II, obtained with the multi-configuration Dirac–Hartree–Fock and the relativistic configuration interaction methods, are reported. We found a linear correlation relation between the mass shift factors and the energies for the transitions concerned, considering all-order electron correlations. This relation is important for estimating the uncertainty in the calculation of isotope shift factors. These atomic data can be used to extract the nuclear mean-square charge radii of the boron isotopes with halo structures or to resolve the high precise spectroscopy of B II in astronomical observation.