In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilinea...In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.展开更多
We modify the bilinear Biicklund transformation for the discrete sine-Gordon equation and derive variety of solutions by freely choosing parameters from the modified B^cklund transformation. Dynamics of solutions and ...We modify the bilinear Biicklund transformation for the discrete sine-Gordon equation and derive variety of solutions by freely choosing parameters from the modified B^cklund transformation. Dynamics of solutions and continuum limits are also discussed.展开更多
Gibbilimbols B and D were synthesized from the facile rearrangement of sulfone in the presence of dibromodifluoromethane and alumina-supported KOH in dichloromethane, followed by refluxing the rearrangement products i...Gibbilimbols B and D were synthesized from the facile rearrangement of sulfone in the presence of dibromodifluoromethane and alumina-supported KOH in dichloromethane, followed by refluxing the rearrangement products in conc. HCI and methanol and then treating with thiophenol in the presence of AIBN.展开更多
We obtain the non-local residual symmetry related to truncated Painlev~ expansion of Burgers equation. In order to localize the residual symmetry, we introduce new variables to prolong the original Burgers equation in...We obtain the non-local residual symmetry related to truncated Painlev~ expansion of Burgers equation. In order to localize the residual symmetry, we introduce new variables to prolong the original Burgers equation into a new system. By using Lie's first theorem, we obtain the finite transformation for the localized residual symmetry. More importantly, we also Iocalize the linear superposition of multiple residual symmetries to find the corresponding finite transformations. It is interesting to find that the n-th B^icklund transformation for Burgers equation can be expressed by determinants in a compact way.展开更多
Burgers equation is the simplest one in soliton theory, which has been widely applied in almost all the physical branches. In this paper, we discuss the Painleve property of the (3+1)-dimensional Burgers equation, ...Burgers equation is the simplest one in soliton theory, which has been widely applied in almost all the physical branches. In this paper, we discuss the Painleve property of the (3+1)-dimensional Burgers equation, and then Becklund transformation is derived according to the truncated expansion of the obtained Painleve analysis. Using the Backlund transformation, we find the rouge wave solutions to the equation via the multilinear variable separation approach. And we aiso give an exact solution obtained by general variable separation approach, which is proved to possess abundant structures.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60772023 the Open Fund under Grant No.BUAASKLSDE-09KF-04l+2 种基金Supported Project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China (973 Program) under Grant No.2005CB321901 the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.
基金Supported by the National Natural Science Foundation of China under Grant No.10671121Shanghai Leading Academic Discipline Project under Grant No.J50101
文摘We modify the bilinear Biicklund transformation for the discrete sine-Gordon equation and derive variety of solutions by freely choosing parameters from the modified B^cklund transformation. Dynamics of solutions and continuum limits are also discussed.
基金Project supported by the National Basic Research Program(973 Program)of Chinathe National Natural Science Foundation of China(Nos.2007CB108903 and 20621091).
文摘Gibbilimbols B and D were synthesized from the facile rearrangement of sulfone in the presence of dibromodifluoromethane and alumina-supported KOH in dichloromethane, followed by refluxing the rearrangement products in conc. HCI and methanol and then treating with thiophenol in the presence of AIBN.
基金supported by the National Natural Science Foundation of China(Grant Nos.11347183,11275129,11305106,11365017,and 11405110)the Natural Science Foundation of Zhejiang Province of China(Grant Nos.Y7080455 and LQ13A050001)
文摘We obtain the non-local residual symmetry related to truncated Painlev~ expansion of Burgers equation. In order to localize the residual symmetry, we introduce new variables to prolong the original Burgers equation into a new system. By using Lie's first theorem, we obtain the finite transformation for the localized residual symmetry. More importantly, we also Iocalize the linear superposition of multiple residual symmetries to find the corresponding finite transformations. It is interesting to find that the n-th B^icklund transformation for Burgers equation can be expressed by determinants in a compact way.
基金Supported by National Natural Science Foundation of China under Grant Nos.11175092,11275123,11205092Ningbo University Discipline Project under Grant No.xkzl1008K.C.Wong Magna Fund in Ningbo University
文摘Burgers equation is the simplest one in soliton theory, which has been widely applied in almost all the physical branches. In this paper, we discuss the Painleve property of the (3+1)-dimensional Burgers equation, and then Becklund transformation is derived according to the truncated expansion of the obtained Painleve analysis. Using the Backlund transformation, we find the rouge wave solutions to the equation via the multilinear variable separation approach. And we aiso give an exact solution obtained by general variable separation approach, which is proved to possess abundant structures.