In this paper,we proved that the infinitesimal generator of a strongly continuous cosine operator function is preserved under the time-dependent perturbation in the sun-reflexive case,where the perturbed operator is ...In this paper,we proved that the infinitesimal generator of a strongly continuous cosine operator function is preserved under the time-dependent perturbation in the sun-reflexive case,where the perturbed operator is a bounded linear operator from X into a bigger space Xθ(not X),then the corresponding 2-order abstract Cauchy problem is uniformly well-posed.展开更多
In this paper, we study higher order elliptic partial differential equations with variable growth, and obtain the existence of solutions in the setting of Wm,p(x) spaces by means of an abstract result for variationa...In this paper, we study higher order elliptic partial differential equations with variable growth, and obtain the existence of solutions in the setting of Wm,p(x) spaces by means of an abstract result for variational inequalities obtained by Gossez and Mustonen. Our result generalizes the corresponding one of Kováik and Rákosník.展开更多
文摘In this paper,we proved that the infinitesimal generator of a strongly continuous cosine operator function is preserved under the time-dependent perturbation in the sun-reflexive case,where the perturbed operator is a bounded linear operator from X into a bigger space Xθ(not X),then the corresponding 2-order abstract Cauchy problem is uniformly well-posed.
文摘In this paper, we study higher order elliptic partial differential equations with variable growth, and obtain the existence of solutions in the setting of Wm,p(x) spaces by means of an abstract result for variational inequalities obtained by Gossez and Mustonen. Our result generalizes the corresponding one of Kováik and Rákosník.