Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surf...Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surface (PSS-IS) is measured on high performance computational platform; and physical plastic-creep friction model is established by using hybrid hyper-singular integral equation & lattice Boltzmann & lattice Green function (BE-LB-LG). The correlation of rheological property and VR & AC evolution under transient (10 μs) macro-normal stress (18-300 MPa) and slip rate (0.25-7.5 m/s) are obtained; and the PSS-IS friction in co-seismic flash heating is quantitative analyzed for the first time.展开更多
文摘Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surface (PSS-IS) is measured on high performance computational platform; and physical plastic-creep friction model is established by using hybrid hyper-singular integral equation & lattice Boltzmann & lattice Green function (BE-LB-LG). The correlation of rheological property and VR & AC evolution under transient (10 μs) macro-normal stress (18-300 MPa) and slip rate (0.25-7.5 m/s) are obtained; and the PSS-IS friction in co-seismic flash heating is quantitative analyzed for the first time.