BaTiO_(3)(BT)has attracted extensive attention among advanced lead-free ferroelectric materials due to its unique dielectric and ferroelectric properties.However,the enormous remanent polarization and coercive field s...BaTiO_(3)(BT)has attracted extensive attention among advanced lead-free ferroelectric materials due to its unique dielectric and ferroelectric properties.However,the enormous remanent polarization and coercive field severely impede the improvement of its energy storage capabilities.Here,the BaTiO_(3)e-Bi(Zn_(0.5)Hf_(0.5))O_(3)(BT-BZH)ceramics with high breakdown field strength and remarkable relaxation characteristics can be obtained by introducing the composite component BZH in BT to regulate the phase structure and grain size of the ceramics.The findings demonstrate that the improvement of energy storage performance is related to the increase of relaxation behavior.A large energy storage density(Wrec~3.62 J/cm^(3))along with superior energy storage efficiency(h~88.5%)is achieved in 0.88BT-0.12BZH relaxor ceramics only at 240 kV/cm.In addition,the sample suggests superior thermal stability and frequency stability within 25e115℃and 1e500 Hz,respectively.Furthermore,the outstanding chargedischarge properties with an ultrafast discharge time(100 ns),large discharged energy density(1.2 J/cm^(3)),impressive current density(519.4 A/cm^(2))and power density(31.1 MW/cm^(3))under the electric field of 120 kV/cm are achieved in studied ceramics.The excellent energy storage performance of BT-BZH ceramics provides a promising platform for the application of lead-free energy-storage materials.展开更多
Barium titanate[BaTiO_(3)(BT)]-based ceramics are typical ferroelectric materials.Here,the discontinuous grain growth(DGG)and relevant grain size effect are deeply studied.An obvious DGG phenomenon is observed in a pa...Barium titanate[BaTiO_(3)(BT)]-based ceramics are typical ferroelectric materials.Here,the discontinuous grain growth(DGG)and relevant grain size effect are deeply studied.An obvious DGG phenomenon is observed in a paradigmatic Zr^(4+)-doped BT-based ceramic,with grains growing from∼2.2–6.6 to∼121.8–198.4μm discontinuously near 1320℃.It is found that fine grains can get together and grow into large ones with liquid phase surrounding them above eutectic temperature.Then the grain boundary density(D g)is quantitatively studied and shows a first-order reciprocal relationship with grain size,and the grain size effect is dependent on D g.Fine grains lead to high D g,and then cause fine domains and pseudocubic-like phase structure because of the interrupted long-range ferroelectric orders by grain boundary.High D g also causes the diffusion phase transition and low Curie dielectric peak due to the distribution of phase transition temperature induced by internal stress.Local domain switching experiments reveal that the polarization orientation is more difficult near the grain boundary,implying that the grain boundary inhibition dominates the process of polarization orientation in fine-grain ceramics,which leads to low polarization but a high coercive field.However,large-grain ceramics exhibit easy domain switching and high&similar ferroelectricity.This work reveals that the grain boundary effect dominates the grain size effect in fine-grain ceramics,and expands current knowledge on DGG and grain size effect in polycrystalline materials.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11574057,and 12172093),the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607),and the Science and Technology Program of Guangdong Province of China(Grant No.2017A010104022).
文摘BaTiO_(3)(BT)has attracted extensive attention among advanced lead-free ferroelectric materials due to its unique dielectric and ferroelectric properties.However,the enormous remanent polarization and coercive field severely impede the improvement of its energy storage capabilities.Here,the BaTiO_(3)e-Bi(Zn_(0.5)Hf_(0.5))O_(3)(BT-BZH)ceramics with high breakdown field strength and remarkable relaxation characteristics can be obtained by introducing the composite component BZH in BT to regulate the phase structure and grain size of the ceramics.The findings demonstrate that the improvement of energy storage performance is related to the increase of relaxation behavior.A large energy storage density(Wrec~3.62 J/cm^(3))along with superior energy storage efficiency(h~88.5%)is achieved in 0.88BT-0.12BZH relaxor ceramics only at 240 kV/cm.In addition,the sample suggests superior thermal stability and frequency stability within 25e115℃and 1e500 Hz,respectively.Furthermore,the outstanding chargedischarge properties with an ultrafast discharge time(100 ns),large discharged energy density(1.2 J/cm^(3)),impressive current density(519.4 A/cm^(2))and power density(31.1 MW/cm^(3))under the electric field of 120 kV/cm are achieved in studied ceramics.The excellent energy storage performance of BT-BZH ceramics provides a promising platform for the application of lead-free energy-storage materials.
基金financially supported by the National Natu-ral Science Foundation of China(Nos.12104093,52072075,and 52102126)the Natural Science Foundation of Fujian Province(Nos.2021J05122,2021J05123,2022J01087,and 2022J01552)+2 种基金the Sichuan Province Science and Technology Support Program(No.2021YJ0560,22ZDYF3306,2022NSFSC1970,and 2022YFG0099)the Qishan Scholar Financial Support from Fuzhou University(No.GXRC-20099)the Fundamental Research Funds for the Central Universities,Southwest Minzu University(No.2020NTD03).
文摘Barium titanate[BaTiO_(3)(BT)]-based ceramics are typical ferroelectric materials.Here,the discontinuous grain growth(DGG)and relevant grain size effect are deeply studied.An obvious DGG phenomenon is observed in a paradigmatic Zr^(4+)-doped BT-based ceramic,with grains growing from∼2.2–6.6 to∼121.8–198.4μm discontinuously near 1320℃.It is found that fine grains can get together and grow into large ones with liquid phase surrounding them above eutectic temperature.Then the grain boundary density(D g)is quantitatively studied and shows a first-order reciprocal relationship with grain size,and the grain size effect is dependent on D g.Fine grains lead to high D g,and then cause fine domains and pseudocubic-like phase structure because of the interrupted long-range ferroelectric orders by grain boundary.High D g also causes the diffusion phase transition and low Curie dielectric peak due to the distribution of phase transition temperature induced by internal stress.Local domain switching experiments reveal that the polarization orientation is more difficult near the grain boundary,implying that the grain boundary inhibition dominates the process of polarization orientation in fine-grain ceramics,which leads to low polarization but a high coercive field.However,large-grain ceramics exhibit easy domain switching and high&similar ferroelectricity.This work reveals that the grain boundary effect dominates the grain size effect in fine-grain ceramics,and expands current knowledge on DGG and grain size effect in polycrystalline materials.