A series of barium-tungstate-based phosphors doped with different concentrations of Dy<sup>3+</sup> were synthesized by solid-state reaction method. Photoluminescence properties and decay lifetime of Dy<...A series of barium-tungstate-based phosphors doped with different concentrations of Dy<sup>3+</sup> were synthesized by solid-state reaction method. Photoluminescence properties and decay lifetime of Dy<sup>3+</sup>-doped BaWO<sub>4</sub> samples were studied. The results indicated that luminescent properties of BaWO<sub>4</sub>:Dy<sup>3+</sup> depended on the Dy<sup>3+</sup> concentration, and the inner energy could transfer from to Dy<sup>3+</sup>. The quality of the light was checked by estimating CIE parameters, and the results showed that BaWO<sub>4</sub>:Dy<sup>3+</sup> was a potential candidate as blue-green luminescent materials in white LED because of its excellent emission spectrum excited by UV light.展开更多
文摘A series of barium-tungstate-based phosphors doped with different concentrations of Dy<sup>3+</sup> were synthesized by solid-state reaction method. Photoluminescence properties and decay lifetime of Dy<sup>3+</sup>-doped BaWO<sub>4</sub> samples were studied. The results indicated that luminescent properties of BaWO<sub>4</sub>:Dy<sup>3+</sup> depended on the Dy<sup>3+</sup> concentration, and the inner energy could transfer from to Dy<sup>3+</sup>. The quality of the light was checked by estimating CIE parameters, and the results showed that BaWO<sub>4</sub>:Dy<sup>3+</sup> was a potential candidate as blue-green luminescent materials in white LED because of its excellent emission spectrum excited by UV light.