For about half a century, chemical control has played a major role in plant disease control. However, the long-term irrational use of chemical pesticide produces many problems. In nature, there exit extensive antagoni...For about half a century, chemical control has played a major role in plant disease control. However, the long-term irrational use of chemical pesticide produces many problems. In nature, there exit extensive antagonistic microorganisms which are tightly concerned with plant pathogenic microbes, and biological pesticides can be researched to control related pathogenic microbes from its metabolites. It's an important research direction of new pesticide development. The Bacillus is the ideal and frequently studied object of bio-control bacteria, and it can produce some entospores with following characteristics such as heat-resistant, drought tolerance, antiultraviolet and organic solvent. In this article, the bio-control mechanism, problems and application prospects of the Bacillus were reviewed to promote the application in new biological pesticide.展开更多
Antimony ore-rocessed wastewater was treated with the optimized bacterium Bacillus sp.The effects of the evaluation indices,including the amount of inoculation,pH value,processing time,and temperature,on the treatment...Antimony ore-rocessed wastewater was treated with the optimized bacterium Bacillus sp.The effects of the evaluation indices,including the amount of inoculation,pH value,processing time,and temperature,on the treatment of antimony ore-rocessed wastewater were studied through orthogonal experiments.The results show that the degrees of effects of the indices on the removal of antimony from wastewater by Bacillus sp.are in the following descending order:the amount of inoculation,pH value,processing time,and temperature.The optimal treatment conditions were attained when the amount of inoculation was 5%,the pH value was 2.5,the processing time was three days,and the temperature was 30 ℃.展开更多
Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a...Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a] pyrene (BaP). The characteristics of BaP degradation by both free and co-immobilized microorganism were then investigated and compared. The removal rate using the immobilized bacterial-fungal mixed consortium was higher than that of the freely mobile mixed consortium. 95.3% of BaP was degraded using the co-immobilized system within 42 d, which was remarkably higher than the removal rate of that by the free strains. The optimal amount of inoculated co-immobilized system for BaP degradation was 2%. The immobilized bacterial-fungal mixed consortium also showed better water stability than the free strains. Kinetics of BaP biodegradation by co-immobilized SF06 and SB02 were also studied. The results demonstrated that BaP degradation could be well described by a zero-order reaction rate equation when the initial BaP concentration was in the range of 10--200 mg/kg. The scanning electronic microscope (SEM) analysis showed that the co-immobilized microstructure was suitable for the growth of SF06 and SB02. The mass transmission process of co-immobilized system in soil is discussed. The results demonstrate the potential for employing the bacterial-fungal mixed consortium, co-immobilized on vermiculite, for in situ bioremediation of BaP.展开更多
Biosorption can be an effective process for the removal of heavy metals from aqueous solutions.The adsorption of Cu(Ⅱ) from aqueous solution on the extracellular polymers (EPS) from Bacillus sp.(named MBFF19) with re...Biosorption can be an effective process for the removal of heavy metals from aqueous solutions.The adsorption of Cu(Ⅱ) from aqueous solution on the extracellular polymers (EPS) from Bacillus sp.(named MBFF19) with respect to pH,incubation time,concentration of initial Cu(Ⅱ),and biosorbent dose was studied.Biosorption of Cu(Ⅱ) is highly pH dependent.The maximum uptake of Cu(Ⅱ) (89.62 mg/g) was obtained at pH 4.8.Biosorption equilibrium was established in approximately 10 min.The correlation coeffcient of mor...展开更多
The production of elastase by Bacillus sp. EL31410 at various temperatures was investigated. In order to study the effect of temperature on elastase fermentation, different cultivation temperatures, ranging from 39 ℃...The production of elastase by Bacillus sp. EL31410 at various temperatures was investigated. In order to study the effect of temperature on elastase fermentation, different cultivation temperatures, ranging from 39 ℃ to 28 ℃, were evaluated in shake flask. The result indicated that 37 ℃ was best for cell growth at earlier stage; while maximum elastase activity was obtained when the cells were cultivated at 30 ℃. This result was verified by batch fermentation in 5-L bio-reactor under 37 ℃ and 30 ℃ temperature, respectively. The specific cell growth rate at 37 ℃ was higher than that at 30 ℃ during earlier stage of cultivation. The maximum value [5.5 U/(h-g DCW)] of elastase formation rate occurred at 24 h at 30 ℃ compared to 4.6 U/(h-g DCW) at 30 h at 37 ℃. Based on these results, two-stage temperature shift strategy and oscillatory temperature cultivation mode were evaluated in the next study. When compared to single temperature of 37 ℃ or 30 ℃, both two-stage temperature shift strategy and oscillatory temperature strategy improved biomass but did not yield the same result as expected for elastase production. The maximum biomass (both 8.6 g/L) was achieved at 30 h at 37 ℃, but at 42 h using two-stage temperature cultivation strategy. The highest elastase production (652 U/ml) was observed at 30 ℃ in batch process. It was concluded that cultivation at constant temperature of 30 ℃ was appropriate for elastase production by Bacillus sp. EL31410.展开更多
An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface ...An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface method-ology were applied to optimize the medium constituents. A central composite design was used to explain the combined effect of three medium constituents, viz, glucose, K2HPO4, MgSO47H2O. The strain produced more elastase in the completely optimized medium, as compared with the partially optimized medium. The fitted model of the second model, as per RSM, showed that glucose was 7.4 g/100 ml, casein 1.13 g/100 ml, corn steep flour 0.616 g/100 ml, K2HPO4 0.206 g/100 ml and MgSO47H2O 0.034 g/100 ml. The fermentation kinetics of these two culture media in the flask experiments were analyzed. It was found that the highest elastase productivity occurred at 54 hours. Higher glucose concentration had inhibitory effect on elastase production. At the same time, we observed that the glucose consumption rate was slow in the completely optimized medium, which can explain the lag period of the highest elastase production. Some metal ions and surfactant additives also affected elastase production and cell growth.展开更多
A newly isolated strain EL31410, producing elastase (E.C3.4.4.7) with h igh elastolytic activity was identified as Bacillus sp. In the medium opt imizat ion, it was found that wheat bran and soybean flour hydrosate we...A newly isolated strain EL31410, producing elastase (E.C3.4.4.7) with h igh elastolytic activity was identified as Bacillus sp. In the medium opt imizat ion, it was found that wheat bran and soybean flour hydrosate were the best crud e carbon and nitrogen source for enzyme production, respectively. Addition of co rn steep flour can affect the bacterium growth and elastase production. A fracti onal factorial design was applied to study the main factors that affect the enzy me production, and central composite experimental design and response surface me thodology were adopted to derive a statistical model for the effect of wheat bra n and soybean flour hydrosate on elastase production. The experimental results s howed that wheat bran had positive effect but soybean flour hydrosate had neg ative effect, on enzyme production. An initial concentration of 3.4%(w/v) wh eat b ran and 9.4%(v/v) soybean flour hydrosate were found to be optimal for enzyme pr oduction in batch culture. The time course of elastase production in the optimiz ed medium composition was also described.展开更多
Cr(Ⅵ)-amended soil was inoculated with Cr(Ⅵ)-reducing strain,Bacillus sp.XW-4 and incubated at 28 ℃in an incubator. Cr(Ⅵ)reduction,available Cr and Cr fractionin soils were studied.The results show that addition o...Cr(Ⅵ)-amended soil was inoculated with Cr(Ⅵ)-reducing strain,Bacillus sp.XW-4 and incubated at 28 ℃in an incubator. Cr(Ⅵ)reduction,available Cr and Cr fractionin soils were studied.The results show that addition of Bacillus sp.XW-4 can promote Cr(Ⅵ)reduction,but inoculation of this strain has a negative effect on the decrease of available Cr content in soil.In controls (without this strain)amended with 100 and 200 mg/kg of Cr(Ⅵ),Cr(Ⅵ)contents decrease to about 41 and 92 mg/kg respectively after incubation of 4 d,while in soil inoculated with XW-4,Cr(Ⅵ)contents decrease to about 18 and 60 mg/kg,respectively.The content of available Cr in soils with inoculation of XW-4 is higher than that in controls.Chromium is partitioned into water soluble Cr,exchangeable Cr,precipitated Cr,Cr bound to organics and residual Cr.The highest content of Cr is observed in residual form and water soluble Cr is not detected for all treatments after 42 d,but the soils inoculated with Bacillus sp.XW-4 contain higher content of exchangeable Cr and lower content of precipitated Cr than the soil without the inoculum.Inoculation of Bacillus sp.XW-4 can increase chromium activity in soils.展开更多
The fundamental growth thermograms of Bacillus sp.NTT-61 have been de- termined by microcalorimetric method.From these growth curves we got some thermo- kinetics data of its growth and its thermodynamic properties.
A strain secreting a strongly acidic polysaccharide flocculating agent was isolated from activated sludge, and identified as Bacillus brevis. The bioflocculant was produced by RL-2 during the late logarithmic growth i...A strain secreting a strongly acidic polysaccharide flocculating agent was isolated from activated sludge, and identified as Bacillus brevis. The bioflocculant was produced by RL-2 during the late logarithmic growth in the batch culture and was recovered from supernatant by ethanol precipitation. The bioflocculant is thermo-stable as its activity remains stable after heated at 100 °C for 45 min. Its flocculating activity with kaolin suspensions was stimulated by the addition of Ca2+, Al3+ and Cu2+. The flocculant consists of glucose, mannose, and galacturonic acid. Its average molecular mass was estimated to be approximately 2.86×105 by the method of viscosity. The flocculant aggregates various inorganic and organic compounds in solution.展开更多
Based on the theory of biological control of Saprolegnia ferax,antagonism test of nine strains of Bacillus sp. to S. ferax JL was carried out. Bacillus sp.BA1 was screened to have significantly inhibitory effects on t...Based on the theory of biological control of Saprolegnia ferax,antagonism test of nine strains of Bacillus sp. to S. ferax JL was carried out. Bacillus sp.BA1 was screened to have significantly inhibitory effects on the growth of S. ferax JL( P 【 0. 05). Then,the effects of Bacillus sp. BA1 on different sources of S. ferax were carried out. Results showed that BA1 also had significantly inhibitory effects on S. ferax 6#,10# and S2( P 【 0. 05). Sequence of 16 S r DNA of BA1 was analyzed; and homologous alignment analysis showed that BA1 had more than 99% similarity with Bacillus cereus. Therefore,it could be concluded that strain BA1 was B. cereus,which significantly inhibited the growth of S. ferax and could be used as the biological control agent for S. ferax diseases in aquaculture.展开更多
In order to promote the development and application of environmental-friendly,efficient and safe beneficial Bacillus sp.preparations,the paper summarizes and systematically elaborates the colonization of Bacillus sp.i...In order to promote the development and application of environmental-friendly,efficient and safe beneficial Bacillus sp.preparations,the paper summarizes and systematically elaborates the colonization of Bacillus sp.in host plants and the mechanism of synergistic effect on disease prevention of host plants,further reviews the application of rhizospheric Bacillus sp.in promoting the growth of agricultural and forestry crops and controlling plant diseases,and prospects the scientific issues and application of plant rhizospheric Bacillus sp.in the future.展开更多
BACKGROUND: Nattokinase (NK) is a serine protease enzyme of the subtilisin family. It exhibits a strong fibrinolytic activity. The fibrinolytic enzymes from Bacillus sp. have attracted interest as thrombolytic agen...BACKGROUND: Nattokinase (NK) is a serine protease enzyme of the subtilisin family. It exhibits a strong fibrinolytic activity. The fibrinolytic enzymes from Bacillus sp. have attracted interest as thrombolytic agents because of their efficiency in the fibrinolytic process including plasmin activation. METHODS: In the present study, VIT garden soil was collected and subjected to isolation process in order to screen for the NK production. Screening for NK enzyme was performed by radial caseinolytic assay. The production of NK enzyme was done in two different production medium for comparative studies. The NK enzyme was purified by gel permeation chromatography. The activity of the purified NK was checked by clot lysis and casein digestion assay. To investigate the structural basis of NK and fibrinogen interaction and also to identify the best binding mode, molecular dynamics and docking studies were performed. RESULTS: Based on the morphological and biochemical characterization, the isolate was identified as Bacillus sp. The overall purification fold of NK was about 3 with the specific activity of 664U/mg and 9.9% yield. Homogeneity of the purified enzyme was analyzed and confirmed by the single band obtained in SDS-PAGE. Molecular weight of the purified protease was estimated as 25 kDa. Purified NK enzyme exhibited 97% of effective clot lysis activity. The NK was docked in to the knob region of the fibrinogen at its binding site using Dock server. A total of 26 residues of fibrinogen and 29 residues of NK constitute the interface region. However, 9 residues offibrinogen (THR238, MET264, LYS266, ARG275, THR277, ALA279, ASN308, MET310, and LYS321) and 8 residues ofNK (GLY61, SER63, THR99, PHE189, LEU209, TYR217, ASN218, and MET222) are involved in intact binding. CONCLUSIONS: A significant amount of NK enzyme was obtained from Bacillus sp. The docking analysis revealed that the NK and fibrinogen adopt an extended binding pattern and interacts with the crucial residues to exhibit their activity.展开更多
To determine the impact of carbohydrates on the metabolic pathway in alkaliphiles, proteomes were obtained from cultures containing different carbohydrates and were resolved on two-dimensional gel electrophoresis (2-D...To determine the impact of carbohydrates on the metabolic pathway in alkaliphiles, proteomes were obtained from cultures containing different carbohydrates and were resolved on two-dimensional gel electrophoresis (2-DE). The proteomes were compared to determine differentially expressed proteins. A novel alkaliphilic bacterium (alkaliphilic Bacillus sp. N16-5 isolated from Wudunur Soda Lake, China) was isolated in media with five different carbon sources (glucose, mannose, galactose, arabinose, and xylose). Comparative proteome analysis identified 61 differentially expressed proteins, which were mainly involved in carbohydrate metabolism, amino acid transport, and metabolism, as well as energy production and conversion. The comparison was based on the draft genome sequence of strain N16-5. The abundance of enzymes involved in central metabolism was significantly changed when exposed to various carbohydrates. Notably, catabolite control protein A (CcpA) was up-regulated under all carbon sources compared with glucose. In addition, pentose exhibited a stronger effect than hexose in CcpA-mediated carbon catabolite repression. These results provided a fundamental understanding of carbohydrate metabolism in alkaliphiles.展开更多
基金Supported by Accelerated Program of Sichuan Academy of Agricultural Sciences(2013QNJJ-019)Spark Program of Ministry of Science and Technology(2011GA-810011)Special Program of Modern Agricultural Technological System(No.CARS-22)~~
文摘For about half a century, chemical control has played a major role in plant disease control. However, the long-term irrational use of chemical pesticide produces many problems. In nature, there exit extensive antagonistic microorganisms which are tightly concerned with plant pathogenic microbes, and biological pesticides can be researched to control related pathogenic microbes from its metabolites. It's an important research direction of new pesticide development. The Bacillus is the ideal and frequently studied object of bio-control bacteria, and it can produce some entospores with following characteristics such as heat-resistant, drought tolerance, antiultraviolet and organic solvent. In this article, the bio-control mechanism, problems and application prospects of the Bacillus were reviewed to promote the application in new biological pesticide.
文摘Antimony ore-rocessed wastewater was treated with the optimized bacterium Bacillus sp.The effects of the evaluation indices,including the amount of inoculation,pH value,processing time,and temperature,on the treatment of antimony ore-rocessed wastewater were studied through orthogonal experiments.The results show that the degrees of effects of the indices on the removal of antimony from wastewater by Bacillus sp.are in the following descending order:the amount of inoculation,pH value,processing time,and temperature.The optimal treatment conditions were attained when the amount of inoculation was 5%,the pH value was 2.5,the processing time was three days,and the temperature was 30 ℃.
基金The National Basic Research Program (973) of China (No. 2004CB418506)the National Natural Science Foundation of China (No.20337010) the Hi-Tech Research and Development Program (863) of China (No. 2004AA649060)
文摘Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a] pyrene (BaP). The characteristics of BaP degradation by both free and co-immobilized microorganism were then investigated and compared. The removal rate using the immobilized bacterial-fungal mixed consortium was higher than that of the freely mobile mixed consortium. 95.3% of BaP was degraded using the co-immobilized system within 42 d, which was remarkably higher than the removal rate of that by the free strains. The optimal amount of inoculated co-immobilized system for BaP degradation was 2%. The immobilized bacterial-fungal mixed consortium also showed better water stability than the free strains. Kinetics of BaP biodegradation by co-immobilized SF06 and SB02 were also studied. The results demonstrated that BaP degradation could be well described by a zero-order reaction rate equation when the initial BaP concentration was in the range of 10--200 mg/kg. The scanning electronic microscope (SEM) analysis showed that the co-immobilized microstructure was suitable for the growth of SF06 and SB02. The mass transmission process of co-immobilized system in soil is discussed. The results demonstrate the potential for employing the bacterial-fungal mixed consortium, co-immobilized on vermiculite, for in situ bioremediation of BaP.
文摘Biosorption can be an effective process for the removal of heavy metals from aqueous solutions.The adsorption of Cu(Ⅱ) from aqueous solution on the extracellular polymers (EPS) from Bacillus sp.(named MBFF19) with respect to pH,incubation time,concentration of initial Cu(Ⅱ),and biosorbent dose was studied.Biosorption of Cu(Ⅱ) is highly pH dependent.The maximum uptake of Cu(Ⅱ) (89.62 mg/g) was obtained at pH 4.8.Biosorption equilibrium was established in approximately 10 min.The correlation coeffcient of mor...
文摘The production of elastase by Bacillus sp. EL31410 at various temperatures was investigated. In order to study the effect of temperature on elastase fermentation, different cultivation temperatures, ranging from 39 ℃ to 28 ℃, were evaluated in shake flask. The result indicated that 37 ℃ was best for cell growth at earlier stage; while maximum elastase activity was obtained when the cells were cultivated at 30 ℃. This result was verified by batch fermentation in 5-L bio-reactor under 37 ℃ and 30 ℃ temperature, respectively. The specific cell growth rate at 37 ℃ was higher than that at 30 ℃ during earlier stage of cultivation. The maximum value [5.5 U/(h-g DCW)] of elastase formation rate occurred at 24 h at 30 ℃ compared to 4.6 U/(h-g DCW) at 30 h at 37 ℃. Based on these results, two-stage temperature shift strategy and oscillatory temperature cultivation mode were evaluated in the next study. When compared to single temperature of 37 ℃ or 30 ℃, both two-stage temperature shift strategy and oscillatory temperature strategy improved biomass but did not yield the same result as expected for elastase production. The maximum biomass (both 8.6 g/L) was achieved at 30 h at 37 ℃, but at 42 h using two-stage temperature cultivation strategy. The highest elastase production (652 U/ml) was observed at 30 ℃ in batch process. It was concluded that cultivation at constant temperature of 30 ℃ was appropriate for elastase production by Bacillus sp. EL31410.
文摘An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface method-ology were applied to optimize the medium constituents. A central composite design was used to explain the combined effect of three medium constituents, viz, glucose, K2HPO4, MgSO47H2O. The strain produced more elastase in the completely optimized medium, as compared with the partially optimized medium. The fitted model of the second model, as per RSM, showed that glucose was 7.4 g/100 ml, casein 1.13 g/100 ml, corn steep flour 0.616 g/100 ml, K2HPO4 0.206 g/100 ml and MgSO47H2O 0.034 g/100 ml. The fermentation kinetics of these two culture media in the flask experiments were analyzed. It was found that the highest elastase productivity occurred at 54 hours. Higher glucose concentration had inhibitory effect on elastase production. At the same time, we observed that the glucose consumption rate was slow in the completely optimized medium, which can explain the lag period of the highest elastase production. Some metal ions and surfactant additives also affected elastase production and cell growth.
文摘A newly isolated strain EL31410, producing elastase (E.C3.4.4.7) with h igh elastolytic activity was identified as Bacillus sp. In the medium opt imizat ion, it was found that wheat bran and soybean flour hydrosate were the best crud e carbon and nitrogen source for enzyme production, respectively. Addition of co rn steep flour can affect the bacterium growth and elastase production. A fracti onal factorial design was applied to study the main factors that affect the enzy me production, and central composite experimental design and response surface me thodology were adopted to derive a statistical model for the effect of wheat bra n and soybean flour hydrosate on elastase production. The experimental results s howed that wheat bran had positive effect but soybean flour hydrosate had neg ative effect, on enzyme production. An initial concentration of 3.4%(w/v) wh eat b ran and 9.4%(v/v) soybean flour hydrosate were found to be optimal for enzyme pr oduction in batch culture. The time course of elastase production in the optimiz ed medium composition was also described.
基金Project(20050532009)supported by the Doctoral Foundation of Ministry of Education of ChinaProject supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘Cr(Ⅵ)-amended soil was inoculated with Cr(Ⅵ)-reducing strain,Bacillus sp.XW-4 and incubated at 28 ℃in an incubator. Cr(Ⅵ)reduction,available Cr and Cr fractionin soils were studied.The results show that addition of Bacillus sp.XW-4 can promote Cr(Ⅵ)reduction,but inoculation of this strain has a negative effect on the decrease of available Cr content in soil.In controls (without this strain)amended with 100 and 200 mg/kg of Cr(Ⅵ),Cr(Ⅵ)contents decrease to about 41 and 92 mg/kg respectively after incubation of 4 d,while in soil inoculated with XW-4,Cr(Ⅵ)contents decrease to about 18 and 60 mg/kg,respectively.The content of available Cr in soils with inoculation of XW-4 is higher than that in controls.Chromium is partitioned into water soluble Cr,exchangeable Cr,precipitated Cr,Cr bound to organics and residual Cr.The highest content of Cr is observed in residual form and water soluble Cr is not detected for all treatments after 42 d,but the soils inoculated with Bacillus sp.XW-4 contain higher content of exchangeable Cr and lower content of precipitated Cr than the soil without the inoculum.Inoculation of Bacillus sp.XW-4 can increase chromium activity in soils.
基金Project supported by National Natural Science Foundation of China.
文摘The fundamental growth thermograms of Bacillus sp.NTT-61 have been de- termined by microcalorimetric method.From these growth curves we got some thermo- kinetics data of its growth and its thermodynamic properties.
文摘A strain secreting a strongly acidic polysaccharide flocculating agent was isolated from activated sludge, and identified as Bacillus brevis. The bioflocculant was produced by RL-2 during the late logarithmic growth in the batch culture and was recovered from supernatant by ethanol precipitation. The bioflocculant is thermo-stable as its activity remains stable after heated at 100 °C for 45 min. Its flocculating activity with kaolin suspensions was stimulated by the addition of Ca2+, Al3+ and Cu2+. The flocculant consists of glucose, mannose, and galacturonic acid. Its average molecular mass was estimated to be approximately 2.86×105 by the method of viscosity. The flocculant aggregates various inorganic and organic compounds in solution.
基金Supported by the Industry-Academia-Research Project of Guangdong Province(2010B090400002)Special Fund for Modern Agricultural Industry Technology System(NYCYTX-49-17)
文摘Based on the theory of biological control of Saprolegnia ferax,antagonism test of nine strains of Bacillus sp. to S. ferax JL was carried out. Bacillus sp.BA1 was screened to have significantly inhibitory effects on the growth of S. ferax JL( P 【 0. 05). Then,the effects of Bacillus sp. BA1 on different sources of S. ferax were carried out. Results showed that BA1 also had significantly inhibitory effects on S. ferax 6#,10# and S2( P 【 0. 05). Sequence of 16 S r DNA of BA1 was analyzed; and homologous alignment analysis showed that BA1 had more than 99% similarity with Bacillus cereus. Therefore,it could be concluded that strain BA1 was B. cereus,which significantly inhibited the growth of S. ferax and could be used as the biological control agent for S. ferax diseases in aquaculture.
基金Supported by Innovation Incentive Project of Qiqihar Science and Technology Bureau (CNYGG-2021029)Special Program of "Agricultural Science and Technology Innovation Leapfrogging Project" of Heilongjiang Academy of Agricultural Sciences "Green and Efficient Prevention and Control Technology of Main Insect Pests in Facility Vegetables"(HNK2019CX10-18)。
文摘In order to promote the development and application of environmental-friendly,efficient and safe beneficial Bacillus sp.preparations,the paper summarizes and systematically elaborates the colonization of Bacillus sp.in host plants and the mechanism of synergistic effect on disease prevention of host plants,further reviews the application of rhizospheric Bacillus sp.in promoting the growth of agricultural and forestry crops and controlling plant diseases,and prospects the scientific issues and application of plant rhizospheric Bacillus sp.in the future.
文摘BACKGROUND: Nattokinase (NK) is a serine protease enzyme of the subtilisin family. It exhibits a strong fibrinolytic activity. The fibrinolytic enzymes from Bacillus sp. have attracted interest as thrombolytic agents because of their efficiency in the fibrinolytic process including plasmin activation. METHODS: In the present study, VIT garden soil was collected and subjected to isolation process in order to screen for the NK production. Screening for NK enzyme was performed by radial caseinolytic assay. The production of NK enzyme was done in two different production medium for comparative studies. The NK enzyme was purified by gel permeation chromatography. The activity of the purified NK was checked by clot lysis and casein digestion assay. To investigate the structural basis of NK and fibrinogen interaction and also to identify the best binding mode, molecular dynamics and docking studies were performed. RESULTS: Based on the morphological and biochemical characterization, the isolate was identified as Bacillus sp. The overall purification fold of NK was about 3 with the specific activity of 664U/mg and 9.9% yield. Homogeneity of the purified enzyme was analyzed and confirmed by the single band obtained in SDS-PAGE. Molecular weight of the purified protease was estimated as 25 kDa. Purified NK enzyme exhibited 97% of effective clot lysis activity. The NK was docked in to the knob region of the fibrinogen at its binding site using Dock server. A total of 26 residues of fibrinogen and 29 residues of NK constitute the interface region. However, 9 residues offibrinogen (THR238, MET264, LYS266, ARG275, THR277, ALA279, ASN308, MET310, and LYS321) and 8 residues ofNK (GLY61, SER63, THR99, PHE189, LEU209, TYR217, ASN218, and MET222) are involved in intact binding. CONCLUSIONS: A significant amount of NK enzyme was obtained from Bacillus sp. The docking analysis revealed that the NK and fibrinogen adopt an extended binding pattern and interacts with the crucial residues to exhibit their activity.
基金supported by the National Basic Research Program of China, Ministry of Science and Technology of China (Grant Nos. 2007CB707801 and 2003CB716001)the National High Technology Research and Development Program of China (Grant Nos. 2006AA020201 and 2007AA021306)
文摘To determine the impact of carbohydrates on the metabolic pathway in alkaliphiles, proteomes were obtained from cultures containing different carbohydrates and were resolved on two-dimensional gel electrophoresis (2-DE). The proteomes were compared to determine differentially expressed proteins. A novel alkaliphilic bacterium (alkaliphilic Bacillus sp. N16-5 isolated from Wudunur Soda Lake, China) was isolated in media with five different carbon sources (glucose, mannose, galactose, arabinose, and xylose). Comparative proteome analysis identified 61 differentially expressed proteins, which were mainly involved in carbohydrate metabolism, amino acid transport, and metabolism, as well as energy production and conversion. The comparison was based on the draft genome sequence of strain N16-5. The abundance of enzymes involved in central metabolism was significantly changed when exposed to various carbohydrates. Notably, catabolite control protein A (CcpA) was up-regulated under all carbon sources compared with glucose. In addition, pentose exhibited a stronger effect than hexose in CcpA-mediated carbon catabolite repression. These results provided a fundamental understanding of carbohydrate metabolism in alkaliphiles.