Bayesian estimation is applied to the analysis of backflow vortex instabilities in typical three-and four bladed liquid propellant rocket(LPR)engine inducers.The flow in the impeller eye is modeled as a set of equally...Bayesian estimation is applied to the analysis of backflow vortex instabilities in typical three-and four bladed liquid propellant rocket(LPR)engine inducers.The flow in the impeller eye is modeled as a set of equally intense and evenly spaced 2D axial vortices,located at the same radial distance from the axis and rotating at a fraction of the impeller speed.The circle theorem and the Bernoulli’s equation are used to predict the flow pressure in terms of the vortex number,intensity,rotational speed,and radial position.The theoretical spectra so obtained are frequency broadened to mimic the dispersion of the experimental data and parametrically fitted to the measured pressure spectra by maximum likelihood estimation with equal and independent Gaussian errors.The method is applied to three inducers,tested in water at room temperature and different loads and cavitation conditions.It successfully characterizes backflow instabilities using the signals of a single pressure transducer flush-mounted on the casing of the impeller eye,effectively by-passing the aliasing and data acquisition/reduction complexities of traditional multiple-sensor cross correlation methods.The identification returns the estimates of the model parameters and their standard errors,providing the information necessary for assessing the accuracy and statistical significance of the results.The flowrate is found to be the major factor affecting the backflow vortex instability,which,on the other hand,is rather insensitive to the occurrence of cavitation.The results are consistent with the data reported in the literature,as well as with those generated by the auxiliary models specifically developed for initializing the maximum likelihood searches and supporting the identification procedure.展开更多
文摘Bayesian estimation is applied to the analysis of backflow vortex instabilities in typical three-and four bladed liquid propellant rocket(LPR)engine inducers.The flow in the impeller eye is modeled as a set of equally intense and evenly spaced 2D axial vortices,located at the same radial distance from the axis and rotating at a fraction of the impeller speed.The circle theorem and the Bernoulli’s equation are used to predict the flow pressure in terms of the vortex number,intensity,rotational speed,and radial position.The theoretical spectra so obtained are frequency broadened to mimic the dispersion of the experimental data and parametrically fitted to the measured pressure spectra by maximum likelihood estimation with equal and independent Gaussian errors.The method is applied to three inducers,tested in water at room temperature and different loads and cavitation conditions.It successfully characterizes backflow instabilities using the signals of a single pressure transducer flush-mounted on the casing of the impeller eye,effectively by-passing the aliasing and data acquisition/reduction complexities of traditional multiple-sensor cross correlation methods.The identification returns the estimates of the model parameters and their standard errors,providing the information necessary for assessing the accuracy and statistical significance of the results.The flowrate is found to be the major factor affecting the backflow vortex instability,which,on the other hand,is rather insensitive to the occurrence of cavitation.The results are consistent with the data reported in the literature,as well as with those generated by the auxiliary models specifically developed for initializing the maximum likelihood searches and supporting the identification procedure.