This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 ...This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.展开更多
Based on analyzing the conservation of energy of penetrator with enhanced lateral efficiency (PELE) the penetrating against metal target, a theoretical expression predicting the residual velocity of PELE perforating...Based on analyzing the conservation of energy of penetrator with enhanced lateral efficiency (PELE) the penetrating against metal target, a theoretical expression predicting the residual velocity of PELE perforating the target is obtained. By modifying De Marre semi-experience formula,the ballistic limit velocities of PELE penetrating into 2024 aluminum alloy and 45# steel targets are also given. The theoretical predictions fit well with experimental or simulative results.展开更多
The response of biological phantoms against high velocity impact is actively sought for applications in defense,space,soft robotics and sensing.Towards this end,we study the ballistic response of silicone based skin s...The response of biological phantoms against high velocity impact is actively sought for applications in defense,space,soft robotics and sensing.Towards this end,we study the ballistic response of silicone based skin simulant against fragment impact.Using a pneumatic gas gun setup,six chisel-nosed and three regular shaped(sphere,cylinder,and cube)fragments were impacted on the skin simulant.The resulting skin simulant response was studied in terms of ballistic limit velocities,energy densities,failure pattern,and the mechanics of interaction.The results indicate that the shape of the fragment affects the ballistic limit velocities.The ballistic limit velocities,energy densities of the chisel-nosed fragment simulating projectiles were relatively insensitive to the size(mass),except for the smallest(0.16 g)and largest(2.79 g)chisel-nosed fragment.For the same size(1 g),ballistic limit velocities and failure are dependent on the shape of the fragment.The skin simulant failed by combined plugging and elastic hole enlargement.Failure in the spherical fragment was dominated by the elastic hole enlargement,whereas plugging failure was dominant in all other fragments.The spherical,cylindrical,and chisel-nosed fragments created circular cavities,and the cubical fragment created a square cavity.In the case of the spherical fragment,slipping of the fragment within the skin simulant was seen.Cubical fragments created lateral cracks emanating from the corners of the square cavity.Interestingly,for all the fragments,the maximum deformation corresponding to the perforation was lower than the non-perforation indicating rate dependent,stress driven failure.The maximum deformation was also dependent on the shape of the fragment.Overall,these results provide unique insights into the mechanical response of a soft simulant against ballistic impact.Results have utility in the calibration and validation of computational models,design of personal protective equipment,and antipersonnel systems.展开更多
A methodology is developed based on the coupling of a finite element code with an optimisation module for the design of land vehicle armouring composed of lightweight aluminium alloy and high strength steel plate.Foll...A methodology is developed based on the coupling of a finite element code with an optimisation module for the design of land vehicle armouring composed of lightweight aluminium alloy and high strength steel plate.Following an experiment/simulation correlation,a numerical model has been built and calibrated considering monolithic plates and then verified considering a bi-metal protection against tungsten carbide projectile mimicking the core of a 7.62×51 AP8 ammunition.In addition,a method is proposed to obtain the v_(res)-v_(i) curve for the full 7.62×51 AP8 bullet from the v_(res)-v_(i) curve obtained from the core only.展开更多
Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were de...Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were determined by a split Hopkinson pressure bar (SHPB) test system. Ti-55531 plates were subjected to two kinds of heat treatments, leading to the formation of high-strength and high-toughness plates. The results of SHPB test exhibit that the maximum impact absorbed energy of the high-strength plate at a strain rate of 2200 s^-1 is 270 MJ/m^3; however, the maximum value for the high-toughness plate at a strain rate of 4900 s^-1 is 710 MJ/m^3. The ballistic limit velocities for the high-strength and high-toughness plates with dimensions of 300 mm×300 mm×8 mm are 330 and 390 m/s, respectively. Excellent dynamic properties of Ti-55531 alloy correspond to good resistance to penetration. The microstructure evolution related to various impact velocities are observed to investigate the failure mechanism.展开更多
The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite el...The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment.展开更多
7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 hea...7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 heat treatment, were joined double-sided by friction stir welding method. Microstructure and microhardness of the welded plate were investigated. It was determined that the finest grain structure and the lowest hardness value occurred in the stir zone as 2-6 mm and HV 80.9, respectively. In order to determine the ballistic properties of welded plates, 7.62 mm armor piercing projectiles were shot to the base metal(BM), heat affected zone(HAZ), and thermomechanically affected zone+stir zone(TMAZ+SZ). Ballistic limits(v_(50)) of these zones were determined. The ballistic limits of the BM, TMAZ+SZ, and HAZ of the plate were approximately 14.7%, 15.3%, and 17.9% lower than that of the standard plate at the same thickness, respectively. It was determined that the armor piercing projectiles created petaling and ductile hole enlargement failure types at the armor plate. Ballistic and mechanical results can be enhanced by hot-cold rolling mills after extrusion and particle reinforcement.展开更多
To further reveal the failure mechanisms of thick ultra-high molecular weight polyethylene(UHMWPE)laminates,field firing tests were conducted for 10-,20-,and 30-mm thick laminates against 12.7-mm calibre wedge-shaped ...To further reveal the failure mechanisms of thick ultra-high molecular weight polyethylene(UHMWPE)laminates,field firing tests were conducted for 10-,20-,and 30-mm thick laminates against 12.7-mm calibre wedge-shaped fragment simulated projectiles at high velocities between 450 and 1200 m/s.The ballistic performance,deformation process,and staged failure characteristics of the laminates with different thicknesses were compared and analysed.The results demonstrate that the ballistic limits of the UHMWPE laminates increase almost linearly with laminate thickness.The 10-mm thick laminate generally experiences two-stage failure characteristics,whereas three-staged failure occurs in the 20-and 30-mm thick laminates and the progressive delamination is evident.The energy limit concept representing the maximum energy absorption efficiency and the idea of reuse of the thick UHMWPE laminates are proposed in this study.The findings of this research will be useful in the design of flexible and effective UHMWPE-based protective equipment.展开更多
Coarse-grained(CG) metals strengthened by nanotwinned(NT) regions possess high strength and good ductility. As such, they are very suitable for applications in bullet-proof targets. Here, a numerical model based o...Coarse-grained(CG) metals strengthened by nanotwinned(NT) regions possess high strength and good ductility. As such, they are very suitable for applications in bullet-proof targets. Here, a numerical model based on the conventional theory of strain gradient plasticity and the Johnson–Cook failure criterion is employed to study the influences of volume fraction of NT regions on their ballistic performance.The results show that in general a relatively small twin spacing(4–10 nm) and a moderate volume fraction(7%–20%) will lead to excellent limit velocity and that the influences of volume fraction on limit displacement change with the category of impact processes.展开更多
Interplanetary meteoroids and space debris can impact satellites orbiting the Earth or spacecraft traveling to the Moon.Targeting China Space Station(CSS),7 satellites selected from the constellation of Beidou Navigat...Interplanetary meteoroids and space debris can impact satellites orbiting the Earth or spacecraft traveling to the Moon.Targeting China Space Station(CSS),7 satellites selected from the constellation of Beidou Navigation Satellite System Phase III(BDS-3),and 3 spacecraft orbiting the Moon,we have adopted in the paper the Meteoroid Engineering Model 3,Divine-Staubach meteoroid environment model,and Jenniskens-McBride meteoroid steam model to analyze the meteoroid environment with the mass range of 10–6~10 g.Orbital Debris Engineering Model 3.1 space debris model is used to analyze the orbital debris environment faced by these satellites.The flux of space debris with a size larger than 100μm is compared with that of the meteoroids.The results show that the space debris flux encountered by China Space Station is much higher than that of the meteoroids with sizes in the above range.And quite the opposite,the meteoroids flux impacting the 7 satellites from the BDS-3 is higher.Upon adopting the double-layer Whipple protection measure,the catastrophic collision flux of these satellites encountering meteoroids is about 10–6 times of that without protection,or even less,implying that the Whipple protection effectively guarantees the safety of the satellites in orbit.Besides,it is also found that the flux of the high-density meteoroid population encountered by each satellite is greater than that of the low-density population,whereas the impact velocity is lower for each satellite.These results can aid the orbit selection and the protection design for satellites and spacecraft.展开更多
Oblique perforation of thick metallic plates by rigid projectiles with various nose shapes is studied in this paper. Two perforation mechanisms, i.e., the hole enlargement for a sharp projectile nose and the plugging ...Oblique perforation of thick metallic plates by rigid projectiles with various nose shapes is studied in this paper. Two perforation mechanisms, i.e., the hole enlargement for a sharp projectile nose and the plugging formation for a blunt projectile nose, are considered in the proposed analytical model. It is shown that the perforation of a thick plate is dominated by several non-dimensional numbers, i.e., the impact function, the geometry function of projectile, the non-dimensional thickness of target and the impact obliquity. Explicit formulae are obtained to predict the ballistic limit, residual velocity and directional change for the oblique perforation of thick metallic plates. The proposed model is able to predict the critical condition for the occurrence of ricochet. The proposed model is validated by comparing the predictions with other existing models and independent experimental data.展开更多
An analytical model on the normal perforation of reinforced concrete slabs is constructed. The effect of reinforcing bars is further hybridized in a general three-stage model consisting of initial cratering, tunnellin...An analytical model on the normal perforation of reinforced concrete slabs is constructed. The effect of reinforcing bars is further hybridized in a general three-stage model consisting of initial cratering, tunnelling and shear plugging. Besides three dimensionless numbers, i. e., the impact function I, the geometry function of projectile N and the dimensionless thickness of concrete target X, which are employed to predict the ballistic performance of perforation of concrete slabs, the reinforcement ratio Ps of concrete and the tensile strength fs of reinforcing bars are considered as the other main factors influencing the perforation process. Simpler solutions of ballistic performances of normal perforation of reinforced concrete slabs are formulated. Theoretical predictions agree well with individual published experimental data.展开更多
Based on the three-stage perforation model, a semi-theoretical analysis is conducted for the ballistic per- formances of a rigid kinetic projectile impacting on concrete plates. By introducing the projectile resistanc...Based on the three-stage perforation model, a semi-theoretical analysis is conducted for the ballistic per- formances of a rigid kinetic projectile impacting on concrete plates. By introducing the projectile resistance coefficients, dimensionless formulae are proposed for depth of penetra- tion (DOP), perforation limit thickness, ballistic limit veloc- ity, residual velocity and perforation ratio, with the projec- tile nosed geometries and projectile-target interfacial fric- tion taken into account. Based on the proposed formula for DOP and lots of penetration tests data of normal and high strength concrete targets, a new expression is obtained for target strength parameter. By comparisons between the re- sults of the proposed formulae and existing empirical formu- lae and large amount of projectile penetration or perforation tests data for monolithic and segmented concrete targets, the validations of the proposed formulae are verified. It is found that the projectile-target interfacial friction can be neglected in the predictions of characteristic ballistic parameters. The dimensionless DOP for low-to-mid speed impacts of non-flat nosed projectiles increases almost linearly with the impact factor by a coefficient of 2/(nS). The anti-perforation ability of the multilayered concrete plates is dependent on both the target plate thickness and the projectile impact velocity. The variation range of the perforation ratio is 1-3.5 for concrete targets.展开更多
With increasing ballistic threat levels,there is ever more demand on developing ceramic armor designs with improved performance.This paper presents finite element simulations that investigate the performance of silico...With increasing ballistic threat levels,there is ever more demand on developing ceramic armor designs with improved performance.This paper presents finite element simulations that investigate the performance of silicon carbide ceramic with steel 4340 backing material and titanium alloy,graphite as buffer layers when subjected to normal and oblique impacts by a tungsten alloy long rod projectile(LRP).Depth of penetration from experimental measurements is compared with simulations to confirm the validity of constitutive,failure model parameters.Titanium alloy cover plate and graphite interface weak layer laterally spread the impact shock away from the SiC tile and reduces the amplification of the stress accumulation at the front surface of the SiC tile.The dwelling time increases before it penetrates into ceramic armor.Further,using AUTODYN®numerical simulations detailed parametric study is carried out to identify the minimum areal density armor for a given ballistic limit velocity.The equivalent protection factor for the bi-layer armor is a simple function of the cosine of the angle of impact.展开更多
Whipple shield,a dual-wall system,as well as its improved structures,is widely applied to defend the hypervelocity impact of space debris(projectile).This paper reviews the studies about the mechanism and process of p...Whipple shield,a dual-wall system,as well as its improved structures,is widely applied to defend the hypervelocity impact of space debris(projectile).This paper reviews the studies about the mechanism and process of protection against hypervelocity impacts using Whipple shield.Ground-based experiment and numerical simulation for hypervelocity impact and protection are introduced briefly.Three steps of the Whipple shield protection are discussed in order,including the interaction between the projectile and bumper,the movement and diffusion of the debris cloud,and the interaction between the debris cloud and rear plate.Potential improvements of the protection performance focusing on these three steps are presented.Representative works in the last decade are mentioned specifically.Some prospects and suggestions for future studies are put forward.展开更多
The mechanical behavior of single-layer graphdiyne(SLGDY)subjected to high-velocity micro-ballistic impacts is analyzed by molecular dynamics(MD)simulations.The ballistic limits of SLGDY is obtained for the first time...The mechanical behavior of single-layer graphdiyne(SLGDY)subjected to high-velocity micro-ballistic impacts is analyzed by molecular dynamics(MD)simulations.The ballistic limits of SLGDY is obtained for the first time.The temperature deterioration effects of the impact resistance are also investigated.The results show that the ballistic limits can reach 75.4%of single-layer graphene(SLGR)at about 1/2 density,leading to approximately the same specific energy absorption(SEA)as SLGR.The ballistic limits of SLGDY and SLGR with single atomic thickness agree with the predictions of macroscopic penetration limits equations,implying the applicability of continuum penetration theories for two-dimensional(2D)materials.In addition,the dynamic responses involving stress wave propagation,conic deformation,and damage evolution are investigated to illuminate the mechanisms of the dynamic energy dissipation.The superior impact resistance of SLGDY and SLGR can be attributed to both the ultra-fast elastic and conic waves and the excellent deformation capabilities.This study provides a deep understanding of the impact behavior of SLGDY,indicating it is a promising protective material.展开更多
Due to the unique structural mode and material property of a composite sandwich plate, related research such as fragment impact resistance of a composite mast is short of publication and urgent in this field. In this ...Due to the unique structural mode and material property of a composite sandwich plate, related research such as fragment impact resistance of a composite mast is short of publication and urgent in this field. In this paper, the commonly accepted sandwich core board theory was modified. Damage caused by a fragment attack was simulated onto a sandwich plate model built with solid and shell elements. It was shown that shear failure and vast matrix cracking are the main reasons for outer coat damage, and tension failure and partial matrix cracking are the cause for inner coat damage. Additionally, according to complexities in actual sea battles, different work conditions of missile attacks were set. Ballistic limit values of different fragment sizes were also obtained, which provides references for enhancing the fragment impact resistance of a composite mast.展开更多
To investigate the ballistic resistance and failure pattern of aeroengine casing following the impact of disk fragments, and to determine the optimum case structure, the phenomena of a 1/3rd disk fragment impact on si...To investigate the ballistic resistance and failure pattern of aeroengine casing following the impact of disk fragments, and to determine the optimum case structure, the phenomena of a 1/3rd disk fragment impact on single and double-layered thin plate targets were simulated using nonlinear dynamical analysis software MSC.Dytran. Strain rate effect was introduced in a Johnson-Cook (JC) material model for the disk fragment and the plate. Impact modeling was based on the Arbitrary Lagrange-Eulerian method, and simulated using explicit finite element method (FEM). Simulation results showed that the major failure pattern of the plate is shearing and tensile fracture with large plastic deformation. It was also concluded that the ballistic limit velocity increases with the standoff distance when it is beyond a certain value, and that greater resistance is obtained when the front plate has either a proportionately low or high thickness. The impact resistance of a double-layered plate may exceed that of a single plate if the thicknesses and standoff distance of the two plates are set appropriately.展开更多
A theoretical study is presented herein on the petalling of a fully-clamped thin metal plate struck by a rigid conical-nosed projectile. It is assumed that the energy absorbed in the petalling process consists of two ...A theoretical study is presented herein on the petalling of a fully-clamped thin metal plate struck by a rigid conical-nosed projectile. It is assumed that the energy absorbed in the petalling process consists of two parts, one part is due to the local deformation during the hole formation and the other is from the global response such as bending and membrane stretching. Various energy absorbing mechanisms are delineated and an approximate equation for the ballistic limit is obtained. It transpires that the predictions from the present model are in good agreement with test data available when the is taken into account. sensitivity of the strain rate of the material展开更多
文摘This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.
文摘Based on analyzing the conservation of energy of penetrator with enhanced lateral efficiency (PELE) the penetrating against metal target, a theoretical expression predicting the residual velocity of PELE perforating the target is obtained. By modifying De Marre semi-experience formula,the ballistic limit velocities of PELE penetrating into 2024 aluminum alloy and 45# steel targets are also given. The theoretical predictions fit well with experimental or simulative results.
文摘The response of biological phantoms against high velocity impact is actively sought for applications in defense,space,soft robotics and sensing.Towards this end,we study the ballistic response of silicone based skin simulant against fragment impact.Using a pneumatic gas gun setup,six chisel-nosed and three regular shaped(sphere,cylinder,and cube)fragments were impacted on the skin simulant.The resulting skin simulant response was studied in terms of ballistic limit velocities,energy densities,failure pattern,and the mechanics of interaction.The results indicate that the shape of the fragment affects the ballistic limit velocities.The ballistic limit velocities,energy densities of the chisel-nosed fragment simulating projectiles were relatively insensitive to the size(mass),except for the smallest(0.16 g)and largest(2.79 g)chisel-nosed fragment.For the same size(1 g),ballistic limit velocities and failure are dependent on the shape of the fragment.The skin simulant failed by combined plugging and elastic hole enlargement.Failure in the spherical fragment was dominated by the elastic hole enlargement,whereas plugging failure was dominant in all other fragments.The spherical,cylindrical,and chisel-nosed fragments created circular cavities,and the cubical fragment created a square cavity.In the case of the spherical fragment,slipping of the fragment within the skin simulant was seen.Cubical fragments created lateral cracks emanating from the corners of the square cavity.Interestingly,for all the fragments,the maximum deformation corresponding to the perforation was lower than the non-perforation indicating rate dependent,stress driven failure.The maximum deformation was also dependent on the shape of the fragment.Overall,these results provide unique insights into the mechanical response of a soft simulant against ballistic impact.Results have utility in the calibration and validation of computational models,design of personal protective equipment,and antipersonnel systems.
基金partly supported by the French Association Nationale de la Recherche et de la Technologie,ANRT (Grant No.2018/0299)。
文摘A methodology is developed based on the coupling of a finite element code with an optimisation module for the design of land vehicle armouring composed of lightweight aluminium alloy and high strength steel plate.Following an experiment/simulation correlation,a numerical model has been built and calibrated considering monolithic plates and then verified considering a bi-metal protection against tungsten carbide projectile mimicking the core of a 7.62×51 AP8 ammunition.In addition,a method is proposed to obtain the v_(res)-v_(i) curve for the full 7.62×51 AP8 bullet from the v_(res)-v_(i) curve obtained from the core only.
基金Project(2012 DFG51540)supported by the Ministry of Science and Technology of China
文摘Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were determined by a split Hopkinson pressure bar (SHPB) test system. Ti-55531 plates were subjected to two kinds of heat treatments, leading to the formation of high-strength and high-toughness plates. The results of SHPB test exhibit that the maximum impact absorbed energy of the high-strength plate at a strain rate of 2200 s^-1 is 270 MJ/m^3; however, the maximum value for the high-toughness plate at a strain rate of 4900 s^-1 is 710 MJ/m^3. The ballistic limit velocities for the high-strength and high-toughness plates with dimensions of 300 mm×300 mm×8 mm are 330 and 390 m/s, respectively. Excellent dynamic properties of Ti-55531 alloy correspond to good resistance to penetration. The microstructure evolution related to various impact velocities are observed to investigate the failure mechanism.
文摘The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment.
文摘7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 heat treatment, were joined double-sided by friction stir welding method. Microstructure and microhardness of the welded plate were investigated. It was determined that the finest grain structure and the lowest hardness value occurred in the stir zone as 2-6 mm and HV 80.9, respectively. In order to determine the ballistic properties of welded plates, 7.62 mm armor piercing projectiles were shot to the base metal(BM), heat affected zone(HAZ), and thermomechanically affected zone+stir zone(TMAZ+SZ). Ballistic limits(v_(50)) of these zones were determined. The ballistic limits of the BM, TMAZ+SZ, and HAZ of the plate were approximately 14.7%, 15.3%, and 17.9% lower than that of the standard plate at the same thickness, respectively. It was determined that the armor piercing projectiles created petaling and ductile hole enlargement failure types at the armor plate. Ballistic and mechanical results can be enhanced by hot-cold rolling mills after extrusion and particle reinforcement.
基金the financial support from National Natural Science Foundation of China(Grant No.51978166)National Key Research and Development Program of China(Grant No.2019YFC0706105,2021YFC3100703)the Fundamental Research Funds for the Central Universities(Grant No.2242022R10124s)。
文摘To further reveal the failure mechanisms of thick ultra-high molecular weight polyethylene(UHMWPE)laminates,field firing tests were conducted for 10-,20-,and 30-mm thick laminates against 12.7-mm calibre wedge-shaped fragment simulated projectiles at high velocities between 450 and 1200 m/s.The ballistic performance,deformation process,and staged failure characteristics of the laminates with different thicknesses were compared and analysed.The results demonstrate that the ballistic limits of the UHMWPE laminates increase almost linearly with laminate thickness.The 10-mm thick laminate generally experiences two-stage failure characteristics,whereas three-staged failure occurs in the 20-and 30-mm thick laminates and the progressive delamination is evident.The energy limit concept representing the maximum energy absorption efficiency and the idea of reuse of the thick UHMWPE laminates are proposed in this study.The findings of this research will be useful in the design of flexible and effective UHMWPE-based protective equipment.
基金supported by the National Natural Science Foundation of China(11372214)the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)(KFJJ17-10M)+1 种基金the support of the NSF Mechanics of Materials Program under CMMI-1162431the support from the Advanced Engineering Programme and School of Engineering,Monash University Malaysia
文摘Coarse-grained(CG) metals strengthened by nanotwinned(NT) regions possess high strength and good ductility. As such, they are very suitable for applications in bullet-proof targets. Here, a numerical model based on the conventional theory of strain gradient plasticity and the Johnson–Cook failure criterion is employed to study the influences of volume fraction of NT regions on their ballistic performance.The results show that in general a relatively small twin spacing(4–10 nm) and a moderate volume fraction(7%–20%) will lead to excellent limit velocity and that the influences of volume fraction on limit displacement change with the category of impact processes.
基金the National Natural Science Foundation of China(42074224)Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)Pandeng Program of National Space Science Center,Chinese Academy of Sciences。
文摘Interplanetary meteoroids and space debris can impact satellites orbiting the Earth or spacecraft traveling to the Moon.Targeting China Space Station(CSS),7 satellites selected from the constellation of Beidou Navigation Satellite System Phase III(BDS-3),and 3 spacecraft orbiting the Moon,we have adopted in the paper the Meteoroid Engineering Model 3,Divine-Staubach meteoroid environment model,and Jenniskens-McBride meteoroid steam model to analyze the meteoroid environment with the mass range of 10–6~10 g.Orbital Debris Engineering Model 3.1 space debris model is used to analyze the orbital debris environment faced by these satellites.The flux of space debris with a size larger than 100μm is compared with that of the meteoroids.The results show that the space debris flux encountered by China Space Station is much higher than that of the meteoroids with sizes in the above range.And quite the opposite,the meteoroids flux impacting the 7 satellites from the BDS-3 is higher.Upon adopting the double-layer Whipple protection measure,the catastrophic collision flux of these satellites encountering meteoroids is about 10–6 times of that without protection,or even less,implying that the Whipple protection effectively guarantees the safety of the satellites in orbit.Besides,it is also found that the flux of the high-density meteoroid population encountered by each satellite is greater than that of the low-density population,whereas the impact velocity is lower for each satellite.These results can aid the orbit selection and the protection design for satellites and spacecraft.
文摘Oblique perforation of thick metallic plates by rigid projectiles with various nose shapes is studied in this paper. Two perforation mechanisms, i.e., the hole enlargement for a sharp projectile nose and the plugging formation for a blunt projectile nose, are considered in the proposed analytical model. It is shown that the perforation of a thick plate is dominated by several non-dimensional numbers, i.e., the impact function, the geometry function of projectile, the non-dimensional thickness of target and the impact obliquity. Explicit formulae are obtained to predict the ballistic limit, residual velocity and directional change for the oblique perforation of thick metallic plates. The proposed model is able to predict the critical condition for the occurrence of ricochet. The proposed model is validated by comparing the predictions with other existing models and independent experimental data.
基金Supported by the State Key Lab of Explosion Science and Technology of BIT Under Contract (No. KFJJ04-3)
文摘An analytical model on the normal perforation of reinforced concrete slabs is constructed. The effect of reinforcing bars is further hybridized in a general three-stage model consisting of initial cratering, tunnelling and shear plugging. Besides three dimensionless numbers, i. e., the impact function I, the geometry function of projectile N and the dimensionless thickness of concrete target X, which are employed to predict the ballistic performance of perforation of concrete slabs, the reinforcement ratio Ps of concrete and the tensile strength fs of reinforcing bars are considered as the other main factors influencing the perforation process. Simpler solutions of ballistic performances of normal perforation of reinforced concrete slabs are formulated. Theoretical predictions agree well with individual published experimental data.
基金supported by the Funds for Creative Research Groups of China(51021001)the National Natural Science Foundations of China(51008304 and 51178461)China Postdoctoral Science Foundation Funded Project(2012M521714)
文摘Based on the three-stage perforation model, a semi-theoretical analysis is conducted for the ballistic per- formances of a rigid kinetic projectile impacting on concrete plates. By introducing the projectile resistance coefficients, dimensionless formulae are proposed for depth of penetra- tion (DOP), perforation limit thickness, ballistic limit veloc- ity, residual velocity and perforation ratio, with the projec- tile nosed geometries and projectile-target interfacial fric- tion taken into account. Based on the proposed formula for DOP and lots of penetration tests data of normal and high strength concrete targets, a new expression is obtained for target strength parameter. By comparisons between the re- sults of the proposed formulae and existing empirical formu- lae and large amount of projectile penetration or perforation tests data for monolithic and segmented concrete targets, the validations of the proposed formulae are verified. It is found that the projectile-target interfacial friction can be neglected in the predictions of characteristic ballistic parameters. The dimensionless DOP for low-to-mid speed impacts of non-flat nosed projectiles increases almost linearly with the impact factor by a coefficient of 2/(nS). The anti-perforation ability of the multilayered concrete plates is dependent on both the target plate thickness and the projectile impact velocity. The variation range of the perforation ratio is 1-3.5 for concrete targets.
基金Authors thanks Temasek Laboratories@Nanyang Technological University(TL@NTU)for the financial support through the project number TL9013103084-02.
文摘With increasing ballistic threat levels,there is ever more demand on developing ceramic armor designs with improved performance.This paper presents finite element simulations that investigate the performance of silicon carbide ceramic with steel 4340 backing material and titanium alloy,graphite as buffer layers when subjected to normal and oblique impacts by a tungsten alloy long rod projectile(LRP).Depth of penetration from experimental measurements is compared with simulations to confirm the validity of constitutive,failure model parameters.Titanium alloy cover plate and graphite interface weak layer laterally spread the impact shock away from the SiC tile and reduces the amplification of the stress accumulation at the front surface of the SiC tile.The dwelling time increases before it penetrates into ceramic armor.Further,using AUTODYN®numerical simulations detailed parametric study is carried out to identify the minimum areal density armor for a given ballistic limit velocity.The equivalent protection factor for the bi-layer armor is a simple function of the cosine of the angle of impact.
基金This work is supported by the National Natural Science Foundation of China(11627901,11872118).
文摘Whipple shield,a dual-wall system,as well as its improved structures,is widely applied to defend the hypervelocity impact of space debris(projectile).This paper reviews the studies about the mechanism and process of protection against hypervelocity impacts using Whipple shield.Ground-based experiment and numerical simulation for hypervelocity impact and protection are introduced briefly.Three steps of the Whipple shield protection are discussed in order,including the interaction between the projectile and bumper,the movement and diffusion of the debris cloud,and the interaction between the debris cloud and rear plate.Potential improvements of the protection performance focusing on these three steps are presented.Representative works in the last decade are mentioned specifically.Some prospects and suggestions for future studies are put forward.
基金supported by the National Natural Science Foundation of China(Grant Nos.11672315,and 11772347)the Science Challenge Project(Grant No.TZ2018001)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB22040302XDB22040303)。
文摘The mechanical behavior of single-layer graphdiyne(SLGDY)subjected to high-velocity micro-ballistic impacts is analyzed by molecular dynamics(MD)simulations.The ballistic limits of SLGDY is obtained for the first time.The temperature deterioration effects of the impact resistance are also investigated.The results show that the ballistic limits can reach 75.4%of single-layer graphene(SLGR)at about 1/2 density,leading to approximately the same specific energy absorption(SEA)as SLGR.The ballistic limits of SLGDY and SLGR with single atomic thickness agree with the predictions of macroscopic penetration limits equations,implying the applicability of continuum penetration theories for two-dimensional(2D)materials.In addition,the dynamic responses involving stress wave propagation,conic deformation,and damage evolution are investigated to illuminate the mechanisms of the dynamic energy dissipation.The superior impact resistance of SLGDY and SLGR can be attributed to both the ultra-fast elastic and conic waves and the excellent deformation capabilities.This study provides a deep understanding of the impact behavior of SLGDY,indicating it is a promising protective material.
基金Supported by the Research-in-advance Foundation of Naval Armory under Grant No.401030101the National Defense Science and Technology Cooperation Foundation(2007DFR80340)Research-in-advance Foundation of National Defense Science and Technology in Shipbuilding Industry(07J1.1.6)
文摘Due to the unique structural mode and material property of a composite sandwich plate, related research such as fragment impact resistance of a composite mast is short of publication and urgent in this field. In this paper, the commonly accepted sandwich core board theory was modified. Damage caused by a fragment attack was simulated onto a sandwich plate model built with solid and shell elements. It was shown that shear failure and vast matrix cracking are the main reasons for outer coat damage, and tension failure and partial matrix cracking are the cause for inner coat damage. Additionally, according to complexities in actual sea battles, different work conditions of missile attacks were set. Ballistic limit values of different fragment sizes were also obtained, which provides references for enhancing the fragment impact resistance of a composite mast.
基金Project (No. 1104-03) supported by the Aviation Propulsion Technology Development Program, China
文摘To investigate the ballistic resistance and failure pattern of aeroengine casing following the impact of disk fragments, and to determine the optimum case structure, the phenomena of a 1/3rd disk fragment impact on single and double-layered thin plate targets were simulated using nonlinear dynamical analysis software MSC.Dytran. Strain rate effect was introduced in a Johnson-Cook (JC) material model for the disk fragment and the plate. Impact modeling was based on the Arbitrary Lagrange-Eulerian method, and simulated using explicit finite element method (FEM). Simulation results showed that the major failure pattern of the plate is shearing and tensile fracture with large plastic deformation. It was also concluded that the ballistic limit velocity increases with the standoff distance when it is beyond a certain value, and that greater resistance is obtained when the front plate has either a proportionately low or high thickness. The impact resistance of a double-layered plate may exceed that of a single plate if the thicknesses and standoff distance of the two plates are set appropriately.
基金supported by the National Natural Science Foundation of China(No.51305122)
文摘A theoretical study is presented herein on the petalling of a fully-clamped thin metal plate struck by a rigid conical-nosed projectile. It is assumed that the energy absorbed in the petalling process consists of two parts, one part is due to the local deformation during the hole formation and the other is from the global response such as bending and membrane stretching. Various energy absorbing mechanisms are delineated and an approximate equation for the ballistic limit is obtained. It transpires that the predictions from the present model are in good agreement with test data available when the is taken into account. sensitivity of the strain rate of the material