With few available soil organic carbon(SOC)profiles and the heterogeneity of those that do exist, the estimation of SOC pools in karst areas is highly uncertain.Based on the spatial heterogeneity of SOC content of 23,...With few available soil organic carbon(SOC)profiles and the heterogeneity of those that do exist, the estimation of SOC pools in karst areas is highly uncertain.Based on the spatial heterogeneity of SOC content of 23,536 samples in a karst watershed, a modified estimation method was determined for SOC storage that exclusively applies to karst areas. The method is a "soil-type method" based on revised calculation indexes for SOC storage. In the present study, the organic carbon contents of different soil types varied greatly, but generally decreased with increasing soil depth. The organic carbon content decreased nearly linearly to a depth of 0–50 cm and then varied at depths of 50–100 cm. Because of the large spatial variability in the karst area, we were able to determine that influences of the different indexes on the estimation of SOC storage decreased as follows: soil thickness > boulder content > rock fragment content > SOC content > bulk density. Using the modified formula, the SOC content in the Houzhai watershed in Puding was estimated to range from 3.53 to 5.44 kg m^(-2), with an average value of 1.24 kg m^(-2) to a depth of 20 cm, and from 4.44 to 14.50 kg m^(-2), with an average value of 12.12 kg m^(-2) to a depth of 100 cm. The total SOC content was estimated at 5.39*10^(5) t.展开更多
基金provided by National Key Basic Research Development Program (Grant No.2013CB956702)
文摘With few available soil organic carbon(SOC)profiles and the heterogeneity of those that do exist, the estimation of SOC pools in karst areas is highly uncertain.Based on the spatial heterogeneity of SOC content of 23,536 samples in a karst watershed, a modified estimation method was determined for SOC storage that exclusively applies to karst areas. The method is a "soil-type method" based on revised calculation indexes for SOC storage. In the present study, the organic carbon contents of different soil types varied greatly, but generally decreased with increasing soil depth. The organic carbon content decreased nearly linearly to a depth of 0–50 cm and then varied at depths of 50–100 cm. Because of the large spatial variability in the karst area, we were able to determine that influences of the different indexes on the estimation of SOC storage decreased as follows: soil thickness > boulder content > rock fragment content > SOC content > bulk density. Using the modified formula, the SOC content in the Houzhai watershed in Puding was estimated to range from 3.53 to 5.44 kg m^(-2), with an average value of 1.24 kg m^(-2) to a depth of 20 cm, and from 4.44 to 14.50 kg m^(-2), with an average value of 12.12 kg m^(-2) to a depth of 100 cm. The total SOC content was estimated at 5.39*10^(5) t.