期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Deformation Damage and Energy Evolution of Basalt Fiber Reinforced Concrete under the Triaxial Compression
1
作者 LU Yufen FANG Congyan +1 位作者 LIN Jiajian ZHUANG Huaxia 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第4期359-368,共10页
To explore the law of energy evolution and the change of damage before and after specimen failure,the conventional triaxial compression tests(5,10,15,20,and 30 MPa)of basalt fiber reinforced concrete(BFRC)with differe... To explore the law of energy evolution and the change of damage before and after specimen failure,the conventional triaxial compression tests(5,10,15,20,and 30 MPa)of basalt fiber reinforced concrete(BFRC)with different fiber volume fractions(0,0.2%and 0.4%)were carried out by MTS816 rock testing system,and the cyclic loading and unloading tests of BFRC with a fiber content of 0.2%were carried out.The experimental results show that the peak strength and strain of BFRC increase with the increase of confining pressure.Tensile failure occurs under low confining pressure,and shear failure occurs under high confining pressure.The best volume fraction of fiber is 0.2%.Under different confining pressures,the input energy,elastic energy,plastic properties,and dissipated energy of the samples first increase and then decrease to a stable level.The elastic energy and dissipated energy reach the maximum near the peak stress,while the input energy and plastic properties reach the maximum at the peak.At the same time,the damage increases continuously with the input of load under different confining pressures,indicating that the failure of the specimen is a process of energy accumulation. 展开更多
关键词 basalt fiber reinforced concrete triaxial compression cyclic loading and unloading energy evolution
原文传递
The Influence of Steel and Basalt Fibers on the Shear and Flexural Capacity of Reinforced Concrete Beams
2
作者 Julita Krassowska Andrzej Lapko 《Journal of Civil Engineering and Architecture》 2013年第7期789-795,共7页
To improve the shear and flexural capacity of flexural members, the steel and basalt fibers were used in model beams tested under flexure. Three series of single span free supported model beams were prepared from SFRC... To improve the shear and flexural capacity of flexural members, the steel and basalt fibers were used in model beams tested under flexure. Three series of single span free supported model beams were prepared from SFRC (steel fiber reinforced concrete) with longitudinal steel reinforcement (steel ratio of 1.2 %) and varied spacing of steel stirrups and they were tested till failure. Another three series of BFRC (basalt fiber reinforced concrete) double-span model beams with a span of 2 mm~ 1,000 mm and cross section 180 mm ~ 80 mm were tested. During the tests till to the failure the beam reactions, vertical deflections and horizontal strains in concrete were registered, to clarify the range of redistribution of bending moments and shear forces over the span of the beams. Almost all the tested model beams failed in shear, showing visible influence of steel and basalt fibers on the shear capacity of the tested beams. The tests results confirmed that steel and basalt fibers in reinforced concrete beams can partially replace (in certain cases) the traditional steel stirrups calculated for shear. 展开更多
关键词 Steel and basalt fiber reinforced concrete STIRRUPS shear capacity.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部