Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable...Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.展开更多
In this paper a method is developed to model the design process gene based on the extensible basic-element with the purpose of design process optimization and reuse. First, the principle of genetic engineering based d...In this paper a method is developed to model the design process gene based on the extensible basic-element with the purpose of design process optimization and reuse. First, the principle of genetic engineering based design process optimization and reuse is put forward and analyzed. Second, the extensible basic-element model of the design process gene is established based on the models of the design process base and the base pair through analyzing the concept and structure of the design process gene and the extensible basic-element as well as its extensibility. Third, the features of divergence and scalability of the extensible basic-element model of the design process gene are discussed for carrying out the extension translation to the design process gene by way of inserting, deleting and updating design process bases. Finally, an example of building extensible basic-element models for the design process base, base pair and design process gene in mechanical product design and the mutation process of the design process gene in airplane design is presented which demonstrates the application of the method proposed in this paper.展开更多
基金the Guangdong Planning Office of Philosophy and Social Science(Grant No.GD22XYS04).
文摘Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.
文摘In this paper a method is developed to model the design process gene based on the extensible basic-element with the purpose of design process optimization and reuse. First, the principle of genetic engineering based design process optimization and reuse is put forward and analyzed. Second, the extensible basic-element model of the design process gene is established based on the models of the design process base and the base pair through analyzing the concept and structure of the design process gene and the extensible basic-element as well as its extensibility. Third, the features of divergence and scalability of the extensible basic-element model of the design process gene are discussed for carrying out the extension translation to the design process gene by way of inserting, deleting and updating design process bases. Finally, an example of building extensible basic-element models for the design process base, base pair and design process gene in mechanical product design and the mutation process of the design process gene in airplane design is presented which demonstrates the application of the method proposed in this paper.