针对压缩感知系统实时应用的需要,探讨了A*OMP算法的并行设计及基于GPU的加速方法.将耗时长的矩阵逆运算转化为可并行的矩阵/向量操作,并结合算法本身的关联特性,进一步采用迭代法实现以降低其计算复杂度.利用GPU高效的并行运算能力,将...针对压缩感知系统实时应用的需要,探讨了A*OMP算法的并行设计及基于GPU的加速方法.将耗时长的矩阵逆运算转化为可并行的矩阵/向量操作,并结合算法本身的关联特性,进一步采用迭代法实现以降低其计算复杂度.利用GPU高效的并行运算能力,将算法中可并行的矩阵/向量计算映射到GPU上并行执行,在面向Matlab的Jacket软件平台上对整体串行算法进行了并行化的设计与实现.在NVIDIA Tesla K20Xm GPU和Intel(R)E5-2650 CPU上进行了测试,实验结果表明:对比CPU平台的串行实现,基于GPU的A*OMP算法整体上可获得约40倍的加速,实现了在保持系统较高重构质量的同时能有效降低计算时间,较好地满足了系统实时性的需要.展开更多
文摘针对压缩感知系统实时应用的需要,探讨了A*OMP算法的并行设计及基于GPU的加速方法.将耗时长的矩阵逆运算转化为可并行的矩阵/向量操作,并结合算法本身的关联特性,进一步采用迭代法实现以降低其计算复杂度.利用GPU高效的并行运算能力,将算法中可并行的矩阵/向量计算映射到GPU上并行执行,在面向Matlab的Jacket软件平台上对整体串行算法进行了并行化的设计与实现.在NVIDIA Tesla K20Xm GPU和Intel(R)E5-2650 CPU上进行了测试,实验结果表明:对比CPU平台的串行实现,基于GPU的A*OMP算法整体上可获得约40倍的加速,实现了在保持系统较高重构质量的同时能有效降低计算时间,较好地满足了系统实时性的需要.