期刊文献+
共找到796篇文章
< 1 2 40 >
每页显示 20 50 100
基于MCS-SBL算法的配电网故障定位方法 被引量:1
1
作者 周群 刘梓琳 +2 位作者 冷敏瑞 印月 何川 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期30-38,共9页
配电网拓扑结构复杂,传统方法往往需要大量测点信息且难以实现快速有效的故障定位,本文提出基于少量测点信息的故障定位方法。首先,利用等效原理建立一个欠定的故障节点电压方程;其次,利用多重测量向量模型的贝叶斯压缩感知算法求解方程... 配电网拓扑结构复杂,传统方法往往需要大量测点信息且难以实现快速有效的故障定位,本文提出基于少量测点信息的故障定位方法。首先,利用等效原理建立一个欠定的故障节点电压方程;其次,利用多重测量向量模型的贝叶斯压缩感知算法求解方程,根据重构稀疏电流矩阵的非零元素位置求解故障区域,实现故障定位;最后,在IEEE33节点配电系统上进行仿真实验,结果表明,所提方法仅需要少量测点的故障前后正序电压分量便可有效定位故障,计算速度较快,并且基本不受故障类型、过渡电阻的影响,同时适用于单故障和多重故障的场景,具有较强的抗噪能力。 展开更多
关键词 配电网 故障定位 多重测量向量模型 稀疏电流 压缩感知
下载PDF
基于AAPC、CS与卡尔曼滤波的WiFi室内定位跟踪算法
2
作者 胡久松 孙英杰 +2 位作者 黄晓峰 谷志茹 李浩 《湖南工业大学学报》 2024年第6期71-78,共8页
针对基于位置指纹的WiFi室内定位技术的定位精度尚未达到实际应用要求的问题,提出一种融合自适应仿射传播(AAPC)、压缩感知(CS)与卡尔曼滤波的WiFi室内定位跟踪算法。其中,离线阶段使用AAPC算法生成具有最优聚类效应性能的聚类指纹,在... 针对基于位置指纹的WiFi室内定位技术的定位精度尚未达到实际应用要求的问题,提出一种融合自适应仿射传播(AAPC)、压缩感知(CS)与卡尔曼滤波的WiFi室内定位跟踪算法。其中,离线阶段使用AAPC算法生成具有最优聚类效应性能的聚类指纹,在线阶段采用CS与最近邻算法进行位置估计。最后,通过将卡尔曼滤波与物理限制相集成来进行定位跟踪。通过采集大量真实实验数据,证明了所开发的算法具有更高的定位精度和更准确的轨迹跟踪效果。 展开更多
关键词 WiFi室内定位 自适应仿射传播 压缩感知 卡尔曼滤波
下载PDF
Application of Bayesian Compressive Sensing in IR-UWB Channel Estimation
3
作者 Song Liu Shaohua Wu Yang Li 《China Communications》 SCIE CSCD 2017年第5期30-37,共8页
Due to the sparse nature of the impulse radio ultra-wideband(IR-UWB)communication channel in the time domain,compressive sensing(CS)theory is very suitable for the sparse channel estimation. Besides the sparse nature,... Due to the sparse nature of the impulse radio ultra-wideband(IR-UWB)communication channel in the time domain,compressive sensing(CS)theory is very suitable for the sparse channel estimation. Besides the sparse nature,the IR-UWB channel has shown more features which can be taken into account in the channel estimation process,such as the clustering structures. In this paper,by taking advantage of the clustering features of the channel,a novel IR-UWB channel estimation scheme based on the Bayesian compressive sensing(BCS)framework is proposed,in which the sparse degree of the channel impulse response is not required. Extensive simulation results show that the proposed channel estimation scheme has obvious advantages over the traditional scheme,and the final demodulation performance,in terms of Bit Error Rate(BER),is therefore greatly improved. 展开更多
关键词 CLUSTER bayesian compressive sensing ultra wideband channel estimation
下载PDF
Face hallucination via compressive sensing 被引量:1
4
作者 杨学峰 程耀瑜 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期149-154,共6页
Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compress... Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compressive sensing based face hallucination method is presented,which is comprised of three steps:dictionary learning、sparse coding and solving maximum a posteriori(MAP)formulation.In the first step,the K-SVD dictionary learning algorithm is adopted to obtain a dictionary which can sparsely represent high resolution(HR)face image patches.In the second step,we seek the sparsest representation for each low-resolution(LR)face image paches input using the learned dictionary,super resolution image blocks are obtained from the sparsest coefficients and dictionaries,which then are assembled into super-resolution(SR)image.Finally,MAP formulation is introduced to satisfy the consistency restrictive condition and obtain the higher quality HR images.The experimental results demonstrate that our approach can achieve better super-resolution faces compared with other state-of-the-art method. 展开更多
关键词 face image super-resolution image face hallucination compressive sensing(cs)
下载PDF
Digital broadcast channel estimation with compressive sensing 被引量:1
5
作者 戚晨皓 吴乐南 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期389-393,共5页
In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the Eur... In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori. 展开更多
关键词 channel estimation compressive sensing cs digital radio mondiale (DRM) orthogonal frequency division multiplexing (OFDM)
下载PDF
变化信道稀疏度的CSI反馈方法
6
作者 邵凯 张雅洁 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2023年第5期838-846,共9页
在大规模多输入多输出(multiple input multiple output,MIMO)系统中,压缩感知(compressed sensing,CS)技术常用于具有稀疏特性的信道状态信息(channel state information,CSI)反馈。针对CS重构时信道稀疏度通常未知的问题,基于深度展... 在大规模多输入多输出(multiple input multiple output,MIMO)系统中,压缩感知(compressed sensing,CS)技术常用于具有稀疏特性的信道状态信息(channel state information,CSI)反馈。针对CS重构时信道稀疏度通常未知的问题,基于深度展开技术提出了一种变化信道稀疏度的CSI反馈方法(a CSI-feedback method for varying channel sparsity,AVCS)。AVCS将信道稀疏度作为训练参数,学习得到通用的网络架构。随着天线数量增大导致信道(矩阵)维度激增,学习网络所得的相互抑制矩阵会呈现二次增长问题,AVCS利用相互抑制矩阵托普利兹(Toeplitz)特性设计了降维卷积网络,解决CSI反馈时的计算复杂度问题。仿真结果表明,所提方法提高了在大规模MIMO系统下CSI重构的适用性,减少了反馈开销且对信道稀疏度具有鲁棒性。 展开更多
关键词 信道状态信息(csI) 压缩感知(cs) 大规模输入多输出(MIMO) 深度学习 变化稀疏度 计算复杂度
下载PDF
Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing 被引量:5
7
作者 WANG Shixin ZHAO Yuan +3 位作者 LAILA Ibrahim XIONG Ying WANG Jun TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期28-36,共9页
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven... A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm. 展开更多
关键词 electronic warfare L-shaped array joint parameter estimation L1-norm minimization bayesian compressive sensing(cs) pair matching
下载PDF
A Novel UWB Signal Sampling Method for Localization based on Compressive Sensing 被引量:4
8
作者 Zhang Lingwen Tan Zhenhui 《China Communications》 SCIE CSCD 2010年第1期65-72,共8页
Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirem... Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirement of high sampling rate which leads to complicated signal processing and expensive hardware. In this paper, we present a novel UWB signal sampling method called UWB signal sampling via temporal sparsity (USSTS). Its sampling rate is much lower than Nyquist rate. Moreover, it is implemented in one step and no extra processing unit is needed. Simulation results show that USSTS can not recover the signal precisely, but for the use in localization, the accuracy of TOA estimation is the same as that in traditional methods. Therefore, USSTS gives a novel and effective solution for the use of UWB signals in localization. 展开更多
关键词 LOCALIZATION sampling Ultra-Wide-Band (UWB) SIGNAL compressive sensing (cs)
下载PDF
Compressive sensing based multiuser detector for massive MBM MIMO uplink 被引量:3
9
作者 SONG Wei WANG Wenzheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期19-27,共9页
Media based modulation(MBM)is expected to be a prominent modulation scheme,which has access to the high data rate by using radio frequency(RF)mirrors and fewer transmit antennas.Associated with multiuser multiple inpu... Media based modulation(MBM)is expected to be a prominent modulation scheme,which has access to the high data rate by using radio frequency(RF)mirrors and fewer transmit antennas.Associated with multiuser multiple input multiple output(MIMO),the MBM scheme achieves better performance than other conventional multiuser MIMO schemes.In this paper,the massive MIMO uplink is considered and a conjunctive MBM transmission scheme for each user is employed.This conjunctive MBM transmission scheme gathers aggregate MBM signals in multiple continuous time slots,which exploits the structured sparsity of these aggregate MBM signals.Under this kind of scenario,a multiuser detector with low complexity based on the compressive sensing(CS)theory to gain better detection performance is proposed.This detector is developed from the greedy sparse recovery technique compressive sampling matching pursuit(CoSaMP)and exploits not only the inherently distributed sparsity of MBM signals but also the structured sparsity of multiple aggregate MBM signals.By exploiting these sparsity,the proposed CoSaMP based multiuser detector achieves reliable detection with low complexity.Simulation results demonstrate that the proposed CoSaMP based multiuser detector achieves better detection performance compared with the conventional methods. 展开更多
关键词 media based modulation(MBM) radio frequency(RF)mirror compressive sensing(cs) multiple input multiple output(MIMO) multiuser detector compressive sampling matching pursuit(CoSaMP).
下载PDF
Video Coding Based on Compressive Sensing via CoSaMP 被引量:1
10
作者 ZHANG Lin 《Journal of Donghua University(English Edition)》 EI CAS 2014年第5期727-730,共4页
Compressive sampling matching pursuit (CoSaMP) algorithm integrates the idea of combining algorithm to ensure running speed and provides rigorous error bounds which provide a good theoretical guarantee to convergenc... Compressive sampling matching pursuit (CoSaMP) algorithm integrates the idea of combining algorithm to ensure running speed and provides rigorous error bounds which provide a good theoretical guarantee to convergence. And compressive sensing (CS) can help us ease the pressure of hardware facility from the requirements of the huge amount in information processing. Therefore, a new video coding framework was proposed, which was based on CS and curvelet transform in this paper. Firstly, this new framework uses curvelet transform and CS to the key frame of test sequence, and then gains recovery frame via CoSaMP to achieve data compress. In the classic CoSaMP method, the halting criterion is that the number of iterations is fixed. Therefore, a new stopping rule is discussed to halting the algorithm in this paper to obtain better performance. According to a large number of experimental results, we ran see that this new framework has better performance and lower RMSE. Through the analysis of the experimental data, it is found that the selection of number of measurements and sparsity level has great influence on the new framework. So how to select the optimal parameters to gain better performance deserves worthy of further study. 展开更多
关键词 compressive sensing(cs) CURVELET TRANSFORM compressivesampling matching pursuit(CoSaMP) SPARSITY
下载PDF
Robust signal recovery algorithm for structured perturbation compressive sensing 被引量:2
11
作者 Youhua Wang Jianqiu Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期319-325,共7页
It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical... It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical application.In order to handle such a case, an optimization problem by exploiting the sparsity characteristics of both the perturbations and signals is formulated. An algorithm named as the sparse perturbation signal recovery algorithm(SPSRA) is then proposed to solve the formulated optimization problem. The analytical results show that our SPSRA can simultaneously recover the signal and perturbation vectors by an alternative iteration way, while the convergence of the SPSRA is also analytically given and guaranteed. Moreover, the support patterns of the sparse signal and structured perturbation shown are the same and can be exploited to improve the estimation accuracy and reduce the computation complexity of the algorithm. The numerical simulation results verify the effectiveness of analytical ones. 展开更多
关键词 sparse signal recovery compressive sensingcs structured matrix perturbation
下载PDF
Compressive Sensing Approaches for Lithographic Source and Mask Joint Optimization 被引量:1
12
作者 Xu Ma Zhiqiang Wang Gonzalo R.Arce 《Journal of Microelectronic Manufacturing》 2018年第2期6-12,共7页
Source and mask joint optimization(SMO)is a widely used computational lithography method for state-of-the-art optical lithography process to improve the yield of semiconductor wafers.Nowadays,computational efficiency ... Source and mask joint optimization(SMO)is a widely used computational lithography method for state-of-the-art optical lithography process to improve the yield of semiconductor wafers.Nowadays,computational efficiency has become one of the most challenging issues for the development of pixelated SMO techniques.Recently,compressive sensing(CS)theory has be explored in the area of computational inverse problems.This paper proposes a CS approach to improve the computational efficiency of pixel-based SMO algorithms.To our best knowledge,this paper is the first to develop fast SMO algorithms based on the CS framework.The SMO workflow can be separated into two stages,i.e.,source optimization(SO)and mask optimization(MO).The SO and MO are formulated as the linear CS and nonlinear CS reconstruction problems,respectively.Based on the sparsity representation of the source and mask patterns on the predefined bases,the SO and MO procedures are implemented by sparse image reconstruction algorithms.A set of simulations are presented to verify the proposed CS-SMO methods.The proposed CS-SMO algorithms are shown to outperform the traditional gradient-based SMO algorithm in terms of both computational efficiency and lithography imaging performance. 展开更多
关键词 Computational LITHOGRAPHY SOURCE MASK optimization(SMO) compressive sensing(cs) INVERSE problem
下载PDF
Vector Approximate Message Passing with Sparse Bayesian Learning for Gaussian Mixture Prior 被引量:2
13
作者 Chengyao Ruan Zaichen Zhang +3 位作者 Hao Jiang Jian Dang Liang Wu Hongming Zhang 《China Communications》 SCIE CSCD 2023年第5期57-69,共13页
Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate ... Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices. 展开更多
关键词 sparse bayesian learning approximate message passing compressed sensing expectation propagation
下载PDF
Degradation algorithm of compressive sensing
14
作者 Chunhui Zhao Wei Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第5期832-839,共8页
The compressive sensing (CS) theory allows people to obtain signal in the frequency much lower than the requested one of sampling theorem. Because the theory is based on the assumption of that the location of sparse... The compressive sensing (CS) theory allows people to obtain signal in the frequency much lower than the requested one of sampling theorem. Because the theory is based on the assumption of that the location of sparse values is unknown, it has many constraints in practical applications. In fact, in many cases such as image processing, the location of sparse values is knowable, and CS can degrade to a linear process. In order to take full advantage of the visual information of images, this paper proposes the concept of dimensionality reduction transform matrix and then se- lects sparse values by constructing an accuracy control matrix, so on this basis, a degradation algorithm is designed that the signal can be obtained by the measurements as many as sparse values and reconstructed through a linear process. In comparison with similar methods, the degradation algorithm is effective in reducing the number of sensors and improving operational efficiency. The algorithm is also used to achieve the CS process with the same amount of data as joint photographic exports group (JPEG) compression and acquires the same display effect. 展开更多
关键词 compressive sensing cs dimensionality reduction transform matrix accuracy control matrix degradation algorithm joint photographic exports group (JPEG) compression.
下载PDF
Adaptive block greedy algorithms for receiving multi-narrowband signal in compressive sensing radar reconnaissance receiver
15
作者 ZHANG Chaozhu XU Hongyi JIANG Haiqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1158-1169,共12页
This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, ... This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, the binary tree search,and the residual monitoring mechanism, two adaptive block greedy algorithms are proposed to achieve a high probability adaptive reconstruction. The use of the block sparsity can greatly improve the efficiency of the support selection and reduce the lower boundary of the sub-sampling rate. Furthermore, the addition of binary tree search and monitoring mechanism with two different supports self-adaption methods overcome the instability caused by the fixed block length while optimizing the recovery of the unknown signal.The simulations and analysis of the adaptive reconstruction ability and theoretical computational complexity are given. Also, we verify the feasibility and effectiveness of the two algorithms by the experiments of receiving multi-narrowband signals on an analogto-information converter(AIC). Finally, an optimum reconstruction characteristic of two algorithms is found to facilitate efficient reception in practical applications. 展开更多
关键词 compressive sensing(cs) adaptive greedy algorithm block sparsity analog-to-information convertor(AIC) multinarrowband signal
下载PDF
Cooperative Compressive Spectrum Sensing in Cognitive Underw ater Acoustic Communication Networks
16
作者 左加阔 陶文凤 +2 位作者 包永强 赵力 邹采荣 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期523-529,共7页
Because of the specific of underwater acoustic channel,spectrum sensing entails many difficulties in cognitive underwater acoustic communication( CUAC) networks, such as severe frequency-dependent attenuation and low ... Because of the specific of underwater acoustic channel,spectrum sensing entails many difficulties in cognitive underwater acoustic communication( CUAC) networks, such as severe frequency-dependent attenuation and low signal-to-noise ratios. To overcome these problems, two cooperative compressive spectrum sensing( CCSS) schemes are proposed for different scenarios( with and without channel state information). To strengthen collaboration among secondary users( SUs),cognitive central node( CCN) is provided to collect data from SUs. Thus,the proposed schemes can obtain spatial diversity gains and exploit joint sparse structure to improve the performance of spectrum sensing. Since the channel occupancy is sparse,we formulate the spectrum sensing problems into sparse vector recovery problems,and then present two CCSS algorithms based on path-wise coordinate optimization( PCO) and multi-task Bayesian compressive sensing( MT-BCS),respectively.Simulation results corroborate the effectiveness of the proposed methods in detecting the spectrum holes in underwater acoustic environment. 展开更多
关键词 cognitive underwater acoustic communication(CUAC) spectrum sensing compressive sensing path-wise coordinate optimization(PCO) multi-task bayesian compressive sensing(MT-Bcs)
下载PDF
Airborne sparse flight array SAR 3D imaging based on compressed sensing in frequency domain 被引量:1
17
作者 TIAN He DONG Chunzhu +1 位作者 YIN Hongcheng YUAN Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期56-67,共12页
In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used... In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability. 展开更多
关键词 three-dimensional(3D)imaging synthetic aperture radar(SAR) sparse flight INTERFEROMETRY compressed sensing(cs)
下载PDF
Estimation of Non-WSSUS Channel for OFDM Systems in High Speed Railway Environment Using Compressive Sensing
18
作者 Chen Wang Yong Fang Zhi-Chao Sheng 《Communications and Network》 2013年第3期661-665,共5页
Non Wide Sense Stationary Uncorrelated Scattering (Non-WSSUS) is one of characteristics for high-speed railway wireless channels. In this paper, estimation of Non-WSSUS Channel for OFDM Systems is considered by using ... Non Wide Sense Stationary Uncorrelated Scattering (Non-WSSUS) is one of characteristics for high-speed railway wireless channels. In this paper, estimation of Non-WSSUS Channel for OFDM Systems is considered by using Compressive Sensing (CS) method. Given sufficiently wide transmission bandwidth, wireless channels encountered here tend to exhibit a sparse multipath structure. Then a sparse Non-WSSUS channel estimation approach is proposed based on the delay-Doppler-spread function representation of the channel. This approach includes two steps. First, the delay-Doppler-spread function is estimated by the Compressive Sensing (CS) method utilizing the delay-Doppler basis. Then, the channel is tracked by a reduced order Kalman filter in the sparse delay-Doppler domain, and then estimated sequentially. Simulation results under LTE-R standard demonstrate that the proposed algorithm significantly improves the performance of channel estimation, comparing with the conventional Least Square (LS) and regular CS methods. 展开更多
关键词 OFDM Non-WSSUS CHANNEL ESTIMATION compressive sensing (cs) KALMAN Filter LTE-R
下载PDF
Compressive Wideband Spectrum Sensing Based on Random Matrix Theory
19
作者 曹开田 戴林燕 +2 位作者 杭燚灵 张蕾 顾凯冬 《Journal of Donghua University(English Edition)》 EI CAS 2015年第2期248-251,共4页
Spectrum sensing in a wideband regime for cognitive radio network(CRN) faces considerably technical challenge due to the constraints on analog-to-digital converters(ADCs).To solve this problem,an eigenvalue-based comp... Spectrum sensing in a wideband regime for cognitive radio network(CRN) faces considerably technical challenge due to the constraints on analog-to-digital converters(ADCs).To solve this problem,an eigenvalue-based compressive wideband spectrum sensing(ECWSS) scheme using random matrix theory(RMT) was proposed in this paper.The ECWSS directly utilized the compressive measurements based on compressive sampling(CS) theory to perform wideband spectrum sensing without requiring signal recovery,which could greatly reduce computational complexity and data acquisition burden.In the ECWSS,to alleviate the communication overhead of secondary user(SU),the sensors around SU carried out compressive sampling at the sub-Nyquist rate instead of SU.Furthermore,the exact probability density function of extreme eigenvalues was used to set the threshold.Theoretical analyses and simulation results show that compared with the existing eigenvalue-based sensing schemes,the ECWSS has much lower computational complexity and cost with no significant detection performance degradation. 展开更多
关键词 compressive wideband Spectrum overhead exact eigenvalue utilized instead considerably constraints
下载PDF
Compressive near-field millimeter wave imaging algorithm based on Gini index and total variation mixed regularization
20
作者 Jue Lyu Dong-Jie Bi +7 位作者 Bo Liu Guo Yi Xue-Peng Zheng Xi-Feng Li Li-Biao Peng Yong-Le Xie Yi-Ming Zhang Ying-Li Bai 《Journal of Electronic Science and Technology》 CAS CSCD 2023年第1期65-74,共10页
A compressive near-field millimeter wave(MMW)imaging algorithm is proposed.From the compressed sensing(CS)theory,the compressive near-field MMW imaging process can be considered to reconstruct an image from the under-... A compressive near-field millimeter wave(MMW)imaging algorithm is proposed.From the compressed sensing(CS)theory,the compressive near-field MMW imaging process can be considered to reconstruct an image from the under-sampled sparse data.The Gini index(GI)has been founded that it is the only sparsity measure that has all sparsity attributes that are called Robin Hood,Scaling,Rising Tide,Cloning,Bill Gates,and Babies.By combining the total variation(TV)operator,the GI-TV mixed regularization introduced compressive near-field MMW imaging model is proposed.In addition,the corresponding algorithm based on a primal-dual framework is also proposed.Experimental results demonstrate that the proposed GI-TV mixed regularization algorithm has superior convergence and stability performance compared with the widely used l1-TV mixed regularization algorithm. 展开更多
关键词 Millimeter wave(MMW) Compressed sensing(cs) Gini index(GI) Total variation(TV) Signal processing Image reconstruction
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部