A new version of the scalar transverse electric(TE) wave equation in the bent waveguide is introduced. Then, TE polarized field in curved single-mode waveguides is analyzed by using the finite-difference beam propagat...A new version of the scalar transverse electric(TE) wave equation in the bent waveguide is introduced. Then, TE polarized field in curved single-mode waveguides is analyzed by using the finite-difference beam propagation method(FD-BPM). The bending loss in bent waveguides is gotten for the optical fields obtained from BPM and comparisons are made among losses of the waveguides with various curvature radiuses, refractive index differences and cross sections. Based on the results, the design of spiral bent waveguide configuration is proposed as follows: refractive index difference being of 0.007, both width and thickness of waveguides being of 6 μm, the curvature radius in the spiral centre being of 4 mm, and the bending loss coefficient of the designed spiral bent waveguide being of 0.302 3 dB/cm.展开更多
A method of designing an E-plane power combiner composed of two quarter-arc bent rectangular waveguides is proposed for sub-THz and THz waves. The quarter-arc bent-waveguide power combiner has a simple geometry which ...A method of designing an E-plane power combiner composed of two quarter-arc bent rectangular waveguides is proposed for sub-THz and THz waves. The quarter-arc bent-waveguide power combiner has a simple geometry which is easy to design and fabricate. By HFSS codes, the physical mechanism and performance of the power combiner are analyzed, and the relationship between the output characteristics and the structure/operating parameters is given. Simulation results show that our power combiner is suitable for the combining of two equalpower and reversed-phase signals, the bandwidth of the combiner is wide and can be adjusted by the radius of the quarter-arc, and the isolation performance of the combiner can be improved by adding thin film resistive septa at the junction of two quarter-arc bent waveguides. Meanwhile, an approximate method based on the analytic geometrical analysis is given to design this power combiner for different frequency bands.展开更多
This paper presents a systematic method to derive Beam Propagation Models for optical waveguides.The technique is based on the use of the symbolic calculus rules for pseudodifferential operators.The cases of straight ...This paper presents a systematic method to derive Beam Propagation Models for optical waveguides.The technique is based on the use of the symbolic calculus rules for pseudodifferential operators.The cases of straight and bent optical waveguides are successively considered.展开更多
文摘A new version of the scalar transverse electric(TE) wave equation in the bent waveguide is introduced. Then, TE polarized field in curved single-mode waveguides is analyzed by using the finite-difference beam propagation method(FD-BPM). The bending loss in bent waveguides is gotten for the optical fields obtained from BPM and comparisons are made among losses of the waveguides with various curvature radiuses, refractive index differences and cross sections. Based on the results, the design of spiral bent waveguide configuration is proposed as follows: refractive index difference being of 0.007, both width and thickness of waveguides being of 6 μm, the curvature radius in the spiral centre being of 4 mm, and the bending loss coefficient of the designed spiral bent waveguide being of 0.302 3 dB/cm.
基金Supported by the National Natural Science Foundation of China under Grant No 11075032the Fundamental Research Funds for the Central Universities under Grant No ZYGX2014J033
文摘A method of designing an E-plane power combiner composed of two quarter-arc bent rectangular waveguides is proposed for sub-THz and THz waves. The quarter-arc bent-waveguide power combiner has a simple geometry which is easy to design and fabricate. By HFSS codes, the physical mechanism and performance of the power combiner are analyzed, and the relationship between the output characteristics and the structure/operating parameters is given. Simulation results show that our power combiner is suitable for the combining of two equalpower and reversed-phase signals, the bandwidth of the combiner is wide and can be adjusted by the radius of the quarter-arc, and the isolation performance of the combiner can be improved by adding thin film resistive septa at the junction of two quarter-arc bent waveguides. Meanwhile, an approximate method based on the analytic geometrical analysis is given to design this power combiner for different frequency bands.
文摘This paper presents a systematic method to derive Beam Propagation Models for optical waveguides.The technique is based on the use of the symbolic calculus rules for pseudodifferential operators.The cases of straight and bent optical waveguides are successively considered.